익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Linear Regression
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Linear Regression''' is a fundamental regression algorithm used in machine learning and statistics to model the relationship between a dependent variable and one or more independent variables. It assumes a linear relationship between the variables, which means the change in the dependent variable is proportional to the change in the independent variables. Linear Regression is commonly used for predictive analysis and trend forecasting. ==Types of Linear Regression== There are two primary types of Linear Regression: *'''Simple Linear Regression''': Models the relationship between a single independent variable and the dependent variable. It tries to fit a straight line, often represented by the equation: y = mx + c where: - '''y''' is the predicted value (dependent variable), - '''x''' is the independent variable, - '''m''' is the slope of the line, - '''c''' is the y-intercept. *'''Multiple Linear Regression''': Extends simple linear regression by modeling the relationship between the dependent variable and multiple independent variables. The equation is represented as: y = b0 + b1x1 + b2x2 + ... + bnxn where: - '''y''' is the predicted value, - '''x1, x2, ... xn''' are independent variables, - '''b0''' is the intercept, and '''b1, b2, ... bn''' are the coefficients for each independent variable. ==Applications of Linear Regression== Linear Regression is widely used across different fields for tasks like: *'''Economics''': Predicting financial indicators, like GDP, stock prices, and economic trends. *'''Healthcare''': Estimating costs, patient outcomes, or health metrics based on other health variables. *'''Marketing''': Analyzing sales trends, demand forecasting, and budgeting. *'''Environmental Science''': Predicting climate changes, pollution levels, or environmental impacts over time. ==Key Metrics for Evaluating Linear Regression== To assess the performance of a Linear Regression model, several metrics are commonly used: *'''Mean Absolute Error (MAE)''': The average of the absolute differences between predicted and actual values, providing a straightforward measure of prediction accuracy. *'''Mean Squared Error (MSE)''': The average of the squared differences between predicted and actual values, which penalizes larger errors. *'''Root Mean Squared Error (RMSE)''': The square root of MSE, providing an error measure on the same scale as the data. *'''R-squared (R²)''': Represents the proportion of the variance in the dependent variable that is explained by the independent variables, where a higher R² value indicates a better fit. ==Assumptions of Linear Regression== Linear Regression relies on several key assumptions: 1. '''Linearity''': Assumes a linear relationship between the independent and dependent variables. 2. '''[[Independence (Linear Regression)|Independence]]''': Observations are independent of each other. 3. '''Homoscedasticity''': The residuals (differences between observed and predicted values) have constant variance. 4. '''Normality of Errors''': The residuals are normally distributed, especially important in small samples. When these assumptions are met, Linear Regression can provide reliable predictions and insights; however, violations of these assumptions may lead to biased results. Techniques such as transformations or regularization may be applied to handle certain violations. [[Category:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록