해석 가능한 모델

From IT Wiki
Revision as of 05:23, 2 November 2024 by 핵톤 (talk | contribs) (새 문서: Interpretable Models 해석 가능한 모델은 모델이 생성하는 예측 결과에 대한 설명을 쉽게 이해할 수 있는 모델을 말합니다. 주로 특성(feature)이 결과에 미치는 영향을 명확하게 파악할 수 있는 모델들이 여기에 해당됩니다. == 모델별 해석 가능성 == 아래 목록은 일반적으로 해석 가능성이 높은 모델을 우선적으로 작성한 내용이다. 아래쪽에 있는 모델들은 해석 가능성...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Interpretable Models

해석 가능한 모델은 모델이 생성하는 예측 결과에 대한 설명을 쉽게 이해할 수 있는 모델을 말합니다. 주로 특성(feature)이 결과에 미치는 영향을 명확하게 파악할 수 있는 모델들이 여기에 해당됩니다.

모델별 해석 가능성

아래 목록은 일반적으로 해석 가능성이 높은 모델을 우선적으로 작성한 내용이다. 아래쪽에 있는 모델들은 해석 가능성이 부족한 모델들에 해당한다.

선형 회귀 (Linear Regression)

  • 단순한 수학적 모델로, 각 특성에 대해 선형 계수를 할당하기 때문에 각 특성이 타겟 변수에 미치는 영향을 쉽게 해석할 수 있다.
    • 예를 들어 연봉을 예측하는 선형 회귀 모델은 아래와 같은 식으로 표현될 수 있고, 곱해지는 값을 통해 특성의 영향도를 파악할 수 있다.
    • ex) 연간 소득 = 2500+(4000×교육 수준)+(200×근무 연수)+(10000×직위)+(300×평가 점수)+(50×주당 근무 시간)
  • 양수 계수는 양의 영향을, 음수 계수는 음의 영향을 나타낸다.

로지스틱 회귀 (Logistic Regression)

  • 이진 분류에 사용되며, 선형 회귀와 마찬가지고 각 특성의 계수를 통해 특성이 결과에 미치는 영향(확률적으로 양의 결과로 향하는지)을 확인할 수 있다.

의사결정 트리 (Decision Tree)

  • 트리의 분기 조건을 통해 어느 특성이 예측에 기여했는지를 시각적으로 이해할 수 있습니다.
  • 트리가 깊지 않다면 전체 모델을 그림으로 표현해 이해하기 쉽다.
  • 단 트리가 너무 복잡해지면 특성 영향을 분석하기가 점점 어려워진다.

나이브 베이즈 분류기 (Naive Bayes Classifier)

  • 각 특성 간 독립성을 가정하여 확률적으로 예측을 수행하며, 특성의 영향을 조건부 확률로 설명할 수 있어 비교적 해석이 쉬운 편이다.