빅데이터분석기사 1회

From IT Wiki
Revision as of 10:47, 20 April 2021 by 빅터기사 (talk | contribs) (새 문서: <br /> ==일정== *필기: 2021.4.17 ==평가== *문제의 퀄리티에 대한 지적이 많음 *전반적으로 ADSP와 유사하다는 평가 ==기출 키워드== {| class="wiki...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


일정

  • 필기: 2021.4.17

평가

  • 문제의 퀄리티에 대한 지적이 많음
  • 전반적으로 ADSP와 유사하다는 평가

기출 키워드

문제 번호 1과목

빅데이터 분석기회

2과목

빅데이터 탐색

3과목

빅데이터 모델링

4과목

빅데이터 결과해석

1 ETL 박스플롯 후진 소거법 bias, variance
2 Deep Learning 개념 변수 선택 인공신경망 개념 인공신경망

하이퍼 파라미터

3 분석 프로세스 5단계 학습데이터 imblanced CNN 계산 scatter plot
4 지도학습 파생변수 잔차진단 bar chart
5 비식별화 처리기준 불량률 계산 (조건부 확률) SVM 불균형 데이터셋
6 비식별화 특징(개념)? 정규확률 계산 MDS(다차원 척도법) roc curve
7 데이터 형태를 파악? 검정하는 것 MLE θ 계산 라쏘, L1 규제 내용으로 나옴 혼동행률
8 최적화 그래프 분석 모델링 절차 파라미터, 하이퍼파라미터 차이
9 개인정보보호법 상관계수 로지스틱 K means 군집
10 정형데이터 품질 보증 병렬 차트 FP, TP계산 F1 스코어
11 EDA의 의미 Z-score 계산(p-value 이용) 부스팅(GBM) 모델선택
12 모델링 개념 점추정 베이지안 확률계산 적합도 검정
13 진단 분석 1종오류 2종오류 홀드아웃 인포그래픽
14 Outlier 차원의 저주 비지도학습 모델 선택 방법
15 데이터 수집 방법 중앙값(선수들 연봉, 평균이 옳은가 중앙값이 옳은가) 분류 민감도, 특이도 설명
16 분석 성숙도 층화추출 군집 모형진단
17 개인정보수집 동의안 Class imbalanced 시계열 Data분석 결과 활용
18 Bottom-up 분석 확률분포 ( 포아송나왔었음) 비정형 Data 시계열
19 데이터 품질 평가 확률분포 랜덤 포레스트 선형 회귀
20 데이터 거버넌스 t분포, z분포 K-fold 시계열 그래프 보고  추세, 계절성, 예측 판단

참고 문헌