익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
벡터 유사도
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
== 유클리드 거리 == '''Euclidean distance''' 두 점 사이의 거리를 구하는 가장 대표적인 방식이다. 구하는 방식은 두 벡터에서 각 성분 간의 차를 제곱하여 합한 뒤 제곱근을 씌워 구한다. 벡터 P와 Q 사이의 유클리드 거리는 아래와 같이 나타낼 수 있다. [[파일:유클리드 거리 공.png]] == 맨해튼 거리 == '''Manhattan distance''' 흔히 택시 거리라고도 하며, 거리 공간에서 유클리드 거리 외의 두 점 사이의 거리를 구하는 방식으로 알려져있다. 두 벡터가 있을 때, 벡터 성분 간 차이의 절댓값을 모두 합하여 구하므로 유클리드 거리보다 식이 비교적 간단하다. 벡터 P와 Q 사이의 맨해튼 거리를 식으로 나타내면 아래와 같다. [[파일:맨해튼 거리 공식.png]] == 민코프스키 거리 == '''Minkowski distance''' 두 벡터의 유사도를 벡터 사이의 각도를 사용해 표현하는 방식이다. 두 벡터 사이의 각도는 0도에서 최대 180도가 가능하며, 이때 그 각도에 해당하는 코사인 값을 두 벡터 사이의 코사인 유사도로 정의한다. 코사인 유사도 값을 구하는 식은 벡터의 내적을 사용해 아래와 같이 표현할 수 있다. 거리 공간에서 사용하는 거리 함수들을 일반화한 방식으로 생각할 수 있다. 아래와 같은 식으로 표현하며, p가 1인 경우 맨해튼 거리, p가 2인 경우 유클리드 거리와 동일하게 표현된다. [[파일:민코프스키 거리.png]] == 코사인 유사도 == '''Cosine similarity''' 두 벡터의 유사도를 벡터 사이의 각도를 사용해 표현하는 방식이다. 두 벡터 사이의 각도는 0도에서 최대 180도가 가능하며, 이때 그 각도에 해당하는 코사인 값을 두 벡터 사이의 코사인 유사도로 정의한다. 코사인 유사도 값을 구하는 식은 벡터의 내적을 사용해 아래와 같이 표현할 수 있다. [[파일:코사인 거리 공.png]] == 자카드 유사도 == Jaccard similarity 두 개의 집합 사이에서 유사도를 구하는 방식이다. 두 집합의 합집합과 교집합의 크기의 비율 값을 유사도로 나타내어 1에 가까울수록 두 집합이 유사한 원소를 가지고 있음을 알 수 있다. 아래의 식은 집합 A와 B 사이의 자카드 유사도를 나타낸 식이다. [[파일:자카드 유사도.png]] == 참고 문헌 == * 출처: FoolsGold 알고리즘의 취약점 분석 및 해결 방안 모색(김호, 박시찬, 신홍직, 이정호, 임준환) [[분류:인공지능]] [[분류:데이터 분석]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록