익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
커널
편집하기 (부분)
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
고급
특수 문자
도움말
문단 제목
2단계
3단계
4단계
5단계
형식
넣기
라틴 문자
확장 라틴 문자
IPA 문자
기호
그리스 문자
그리스어 확장
키릴 문자
아랍 문자
아랍어 확장
히브리 문자
뱅골어
타밀어
텔루구어 문자
싱할라 문자
데바나가리어
구자라트 문자
태국어
라오어
크메르어
캐나다 원주민 언어
룬 문자
Á
á
À
à
Â
â
Ä
ä
Ã
ã
Ǎ
ǎ
Ā
ā
Ă
ă
Ą
ą
Å
å
Ć
ć
Ĉ
ĉ
Ç
ç
Č
č
Ċ
ċ
Đ
đ
Ď
ď
É
é
È
è
Ê
ê
Ë
ë
Ě
ě
Ē
ē
Ĕ
ĕ
Ė
ė
Ę
ę
Ĝ
ĝ
Ģ
ģ
Ğ
ğ
Ġ
ġ
Ĥ
ĥ
Ħ
ħ
Í
í
Ì
ì
Î
î
Ï
ï
Ĩ
ĩ
Ǐ
ǐ
Ī
ī
Ĭ
ĭ
İ
ı
Į
į
Ĵ
ĵ
Ķ
ķ
Ĺ
ĺ
Ļ
ļ
Ľ
ľ
Ł
ł
Ń
ń
Ñ
ñ
Ņ
ņ
Ň
ň
Ó
ó
Ò
ò
Ô
ô
Ö
ö
Õ
õ
Ǒ
ǒ
Ō
ō
Ŏ
ŏ
Ǫ
ǫ
Ő
ő
Ŕ
ŕ
Ŗ
ŗ
Ř
ř
Ś
ś
Ŝ
ŝ
Ş
ş
Š
š
Ș
ș
Ț
ț
Ť
ť
Ú
ú
Ù
ù
Û
û
Ü
ü
Ũ
ũ
Ů
ů
Ǔ
ǔ
Ū
ū
ǖ
ǘ
ǚ
ǜ
Ŭ
ŭ
Ų
ų
Ű
ű
Ŵ
ŵ
Ý
ý
Ŷ
ŷ
Ÿ
ÿ
Ȳ
ȳ
Ź
ź
Ž
ž
Ż
ż
Æ
æ
Ǣ
ǣ
Ø
ø
Œ
œ
ß
Ð
ð
Þ
þ
Ə
ə
서식 지정
링크
문단 제목
목록
파일
각주
토론
설명
입력하는 내용
문서에 나오는 결과
기울임꼴
''기울인 글씨''
기울인 글씨
굵게
'''굵은 글씨'''
굵은 글씨
굵고 기울인 글씨
'''''굵고 기울인 글씨'''''
굵고 기울인 글씨
== 종류 == * '''[[모놀리식 커널|단일형 커널]]'''(monolithic kernel) - 커널의 다양한 서비스 및 높은 수준의 하드웨어 추상화를 하나의 덩어리(주소 공간)로 묶은 것이다. 운영 체제 개발자 입장에서 유지 보수가 일반적으로 더 어려우나 성능이 좋다. * '''[[마이크로커널]]'''(microkernel) - 하드웨어 추상화에 대한 간결한 작은 집합을 제공하고 더 많은 기능은 [[서버]]라고 불리는 응용 소프트웨어를 통해 제공한다. * '''[[하이브리드 커널|혼합형 커널]]'''(hybrid kernel) - 성능 향상을 위해 추가적인 코드를 커널 공간에 넣은 점을 제외하면 많은 부분은 순수 마이크로커널과 비슷하다. '''수정 마이크로커널'''이라고도 한다. * '''[[마이크로커널#나노커널|나노커널]]'''(nanokernel) - 실질적으로 모든 서비스를 책임진다. * '''[[엑소커널]]'''(exokernel) - 낮은 수준의 하드웨어 접근을 위한 최소한의 추상화를 제공한다. 전형적으로 엑소커널 시스템에서는 커널이 아닌 [[라이브러리 (컴퓨팅)|라이브러리]]가 단일형 커널 수준의 추상을 제공한다. === 단일형 커널 === 단일형 커널은 하드웨어 위에 높은 수준의 가상 계층을 정의한다. 높은 수준의 가상 계층은 기본 연산 집합과 [[관리자 모드]]에 작동하는 [[모듈 (프로그래밍)|모듈]]인 [[프로세스]] 관리, [[동시성 (컴퓨터)|동시성]], [[메모리 관리]] 등의 운영 체제 서비스를 구현하기 위한 [[시스템 콜]]으로 되어 있다. 이 연산들을 제공하는 모든 모듈이 전체로부터 분리되어 있더라도 모든 모듈이 같은 주소 공간에서 실행되기 때문에 코드의 집적도는 매우 조밀하며 수정하기 어렵고 한 모듈의 버그는 시스템 전반을 멈추게 할 수 있다. 그러나 구현이 신뢰할 수 있을 정도로 완성되면 구성 요소의 내부 집적이 내부의 시스템 이용을 효과적이게 하여 좋은 단일형 커널은 높은 효율을 보인다. 단일형 커널의 지지자들은 코드의 정확성 여부와 그런 코드(부정확한 코드)가 커널에 포함되었는지를 확인할 수 있고 그것은 마이크로커널에 비해 조금 더 우위에 있다고 주장한다. [[리눅스]], [[FreeBSD]], [[솔라리스 (운영 체제)|솔라리스]]와 같은 최신의 단일형 커널은 실행 모듈을 실시간으로 읽어들일 수 있다. 실시간으로 실행 모듈을 읽는 특징은 커널이 허용하는 범위 내에서 손쉽게 확장할 수 있게 커널 공간의 코드의 양을 최소한으로 유지시켜 준다. [[마이크로소프트]] [[윈도 NT]] 제품군(NT, 2000, XP, 2003, 비스타,7,8,8.1,10)은 처음에는 혼합형 커널이었으나 나중에 나온 것들은 단일형 커널로 바뀌었다. [[윈도 NT]] 시리즈는 상위의 서비스들을 '''NT executive'''이라는 서버로 구현하였다. [[Win32]] 특성은 처음에는 사용자 모드의 서버 형태로 구현되었으나, 최근 버전에서는 관리자 주소 영역으로 이동하였다. 다양한 서버들이 로컬 프로시저 콜(LPC: Local Procedure Call)이라 불리는 주소 영역간 매커니즘을 통해 통신하며, 성능을 최적화하기 위해 공유 메모리를 이용한다. 주로 다음 운영 체제들의 커널이 단일형 커널인 것으로 알려져 있다. * [[유닉스]] * [[BSD]] * [[리눅스]] * [[솔라리스 (운영 체제)|솔라리스]] * [[윈도 NT]] * [[벨로나2]] * [[AIX (운영 체제)|AIX]] * [[AGNIX]] === 마이크로커널 === {{본문|마이크로커널}} 마이크로커널은 하드웨어 위에 매우 간결한 추상화를 정의한다. 기본 연산 집합과 운영 체제 서비스를 구현한 [[스레드 관리]], [[주소 공간]], [[프로세스간 통신]]의 작은 [[시스템 콜]]으로 이루어져 있다. 일반적으로 커널이 제공하는 [[컴퓨터 네트워킹|네트워킹]]과 같은 다른 서비스들은 사용자 공간 프로그램인 '''서버'''로 구현한다. 운영 체제는 서버를 다른 일반적인 프로그램처럼 간단히 시작하고 끌 수 있다. 이를테면 네트워킹 지원이 필요 없는 작은 시스템에서는 간단히 서버를 끄면 된다. 이 경우 전통적인 시스템에서는 [[컴파일러|재컴파일]]이 필요했고 일반 사용자의 능력 밖의 일이다. 이론적으로 마이크로커널에서 시스템은 더 안정적이다. 서버가 중단될 때 커널의 충돌이 아니기 때문에 단 하나의 프로그램만 내려버리면 된다. 그러나 서버가 실패한 후 시스템 상태도 잃어버릴 경우 응용 프로그램이 계속 수행되는 것은 그 응용 프로그램이 막 복사된 다른 서버를 이용하게 되더라도 보통은 매우 힘들다. 예를 들어 [[TCP/IP]] 연결을 요구하는 (이론적인) 서버가 다시 시작되면 응용 소프트웨어는 연결이 "끊어졌습니다."라고 말하고 서버의 새 인스턴스를 찾아서 다시 연결한다. 그러나 파일과 같은 다른 시스템 객체는 이렇게 편리한 [[의미론]]이 없다. 이러한 편리가 믿음직스럽지 못하고 마음대로 이용할 수 없다. 기록할 정보들은 모두 미리 보관해 두어야 한다. 서버 간의 하나의 서버를 다시 시작할 때 중요 상태를 보호하기 위해 [[데이터베이스 트랜잭션|트랜잭션]], [[복제 (컴퓨터)|복제]], [[응용 대조점|대조점]]의 [[데이터베이스]] 기술이 요구된다. 일반적으로 마이크로커널은 전통적인 디자인의 수행을 잘못하고 때로는 극적이다. 이유는 응용과 서버 간의 자료 교환을 위해 커널을 출입하는 [[문맥 교환]] 때문이다. 주의 깊은 조율이 오버헤드를 극적으로 줄여줄 것으로 믿어져 왔으나 90년대 중반부터 대부분의 연구원들은 시도를 포기했다. 최근에 새 마이크로커널은 성능을 최우선으로 설계하며 이 문제를 넓은 부분에서 다루었다. 그러나 현재 운영 체제 시장은 자기 몸 사리며 마이크로커널 설계에 소극적이다. 마이크로커널과 마이크로커널에 기반한 운영 체제의 예 * [[AmigaOS]] * [[Amoeba]] * [[ChorusOS]] * [[EROS]] * [[Haiku]] * [[K42]] * [[LSE/OS]] ([[나노커널]]) * [[KeyKOS]] ([[나노커널]]) * [[L4 마이크로커널]] * [[Mach (커널)]] - [[GNU 허드]], [[넥스트스텝]], [[오픈스텝]],[[OS X]]에 사용 됨. * [[MERT]] * [[미닉스]] * [[MorphOS]] * [[NewOS]] * [[QNX]] * [[Phoenix-RTOS]] * [[RadiOS]] * [[Spring operating system]] * [[VSTa]] * [[심비안 OS]] === 혼합형 커널(수정 마이크로커널) === 혼합형 커널은 본질적으로 마이크로커널을 따르나, 일부 커널의 비(非)본질적 기능이더라도 사용자 레벨에서 수행될 때 성능상 느린 코드들을 커널 레벨에서 수행하도록 수정한 것을 말한다. 이는 다양한 운영 체제 개발자들이 마이크로커널 기반의 설계를 받아들이던 시점에 순수한 마이크로커널의 성능상의 한계를 인식하고 타협한 결과이다. 예를 들어, [[OS X]]의 커널인 [[XNU]]는 Mach 커널 3.0 마이크로커널에 기반을 두고 있지만, 전통적인 마이크로커널 설계의 지연 현상을 줄이기 위해 BSD 커널의 일부 코드들을 들여와 동일한 주소 영역에서 실행하고 있다. [[DragonFly BSD]]는 첫 번째 비 Mach 기반의 BSD OS로 혼합형 커널 구성을 적용한 예이다. 하이브리드 커널로는 다음과 같은 것들도 포함된다. * [[ReactOS]] * [[BeOS]] 커널 * [[넷웨어]] 커널 혼합형 커널이라는 말을 부팅 후에 모듈을 읽어들일 수 있는 단일형 커널과 혼용하는 사람들이 있다. 이것은 사실이 아니다. 혼합형 커널은 단일형 커널과 마이크로커널 설계 양쪽의 구조적 개념과 작동방법에 대한 특히 메시지 전달과 어떤 중요하지 않은 코드는 사용자 공간에 들어가는 반면 어떤 코드는 성능의 이유로 커널 공간에 포함해야 하는지에 대한 문제의식을 가진다. === 엑소커널 === {{본문|엑소커널}} 엑소커널은 [[운영 체제]] 설계에 대한 급진적인 신개념으로 [[말단 이론]]을 따르는 수직 구조의 운영 체제이다.엑소커널의 구상은 개발자에게 강제적인 추상화를 줄여 하드웨어 추상화에 대해 선택지를 다양하게 하는 것이다. 엑소커널은 기능이 보호를 보장하는 것과 자원을 [[분배]]하는 것만 하기에 매우 작아 편익보다 단순함을 제공한다. 이런 특성은 오히려 모든 사용자가 각기 실제 호스트 컴퓨터의 자원을 [[에뮬레이터|모방한]] 컴퓨터를 받는[[VM (운영 체제)|VM/370]] 운영 체제와 비슷하다. 반면에 모놀리식 커널이든 마이크로 커널이든 전통적인 커널 설계는 [[하드웨어 추상화 계층]](HAL)이나 장치 드라이버 아래 자원을 숨김으로써 하드웨어를 추상화한다. 한 예로 전통적인 시스템에서 물리 메모리가 할당할 때 실제 위치를 알려주지 않기 때문에 오프셋과 [[기억 관리 장치]]를 통해서만 문제를 해결 할 수 있다. === 노커널 === [[TUNES|TUNES Project]] [http://tunes.org]와 [[UnununiumOS]] [http://www.unununium.org]는 노커널[http://cliki.tunes.org/No-Kernel] 실험이다. 노커널 소프트웨어는 단일 중앙 입구의 제약이 없다.
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록