익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Cumulative Response Curve
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Cumulative Response Curve (CRC)''' is graphical tools used in predictive modeling and data science to assess a model's ability to capture positive outcomes as more of the dataset is selected. They provide insight into how effectively a model identifies the highest value cases early in the ranking. ==What is a Cumulative Response Curve?== A Cumulative Response Curve plots the cumulative percentage of actual positive instances (y-axis) against the cumulative percentage of the population ranked by the model (x-axis). The curve shows how many positives are captured as a greater percentage of the dataset is considered, with the initial portion of the curve indicating the model's strength in identifying positive cases. ==Key Features of Cumulative Response Curves== *'''Steep Initial Curve''': Indicates strong model performance, capturing a high concentration of positive outcomes early. *'''Closer to Diagonal Line''': Suggests the model has limited ability to distinguish between positive and negative instances, performing similarly to random selection. *'''Random Chance Line''': Serves as a baseline, representing the outcome if instances were selected without a model. ==How to Use Cumulative Response Curves== Cumulative Response Curves are useful for: *'''Comparing Models''': Determining which model identifies positive instances more effectively, particularly in the early ranking. *'''Resource Allocation Decisions''': Understanding how many resources are needed to capture a desired percentage of positive outcomes. *'''Threshold Selection''': Helping to identify a cut-off point for selecting instances, especially in applications like customer targeting or fraud detection. ==Applications of Cumulative Response Curves== Cumulative Response Curves are widely used in areas that require prioritization of high-value targets: *'''Direct Marketing''': Assessing the proportion of responders identified as more resources are dedicated to the top-ranking segments. *'''Risk Management''': Evaluating how effectively a model can flag high-risk transactions or accounts within a small segment of the population. *'''Churn Prediction''': Identifying the percentage of likely churners within the first few deciles of the model ranking, aiding in proactive retention efforts. ==Interpreting Cumulative Response Curves== To interpret a Cumulative Response Curve effectively: *Compare the model curve to the random chance line – the greater the distance from this line, the better the model’s performance. *Focus on the initial portion of the curve to understand how quickly positives are concentrated, which is particularly important in resource-limited scenarios. ==Related Metrics and Curves== Cumulative Response Curves are often used alongside other performance metrics: *'''Lift Curve''': Provides insight into the model’s performance relative to random selection across different segments. *'''Gain Chart''': Shows cumulative gain in capturing positive cases, related to the Cumulative Response Curve. *'''ROC Curve''': Assesses the trade-off between true positives and false positives across thresholds, useful for model comparison. ==See Also== *[[Lift Curve]] *[[Gain Chart]] *[[ROC Curve]] *[[Customer Segmentation]] *[[Predictive Analytics]] [[Category:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록