익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Dimensionality Reduction
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
고급
특수 문자
도움말
문단 제목
2단계
3단계
4단계
5단계
형식
넣기
라틴 문자
확장 라틴 문자
IPA 문자
기호
그리스 문자
그리스어 확장
키릴 문자
아랍 문자
아랍어 확장
히브리 문자
뱅골어
타밀어
텔루구어 문자
싱할라 문자
데바나가리어
구자라트 문자
태국어
라오어
크메르어
캐나다 원주민 언어
룬 문자
Á
á
À
à
Â
â
Ä
ä
Ã
ã
Ǎ
ǎ
Ā
ā
Ă
ă
Ą
ą
Å
å
Ć
ć
Ĉ
ĉ
Ç
ç
Č
č
Ċ
ċ
Đ
đ
Ď
ď
É
é
È
è
Ê
ê
Ë
ë
Ě
ě
Ē
ē
Ĕ
ĕ
Ė
ė
Ę
ę
Ĝ
ĝ
Ģ
ģ
Ğ
ğ
Ġ
ġ
Ĥ
ĥ
Ħ
ħ
Í
í
Ì
ì
Î
î
Ï
ï
Ĩ
ĩ
Ǐ
ǐ
Ī
ī
Ĭ
ĭ
İ
ı
Į
į
Ĵ
ĵ
Ķ
ķ
Ĺ
ĺ
Ļ
ļ
Ľ
ľ
Ł
ł
Ń
ń
Ñ
ñ
Ņ
ņ
Ň
ň
Ó
ó
Ò
ò
Ô
ô
Ö
ö
Õ
õ
Ǒ
ǒ
Ō
ō
Ŏ
ŏ
Ǫ
ǫ
Ő
ő
Ŕ
ŕ
Ŗ
ŗ
Ř
ř
Ś
ś
Ŝ
ŝ
Ş
ş
Š
š
Ș
ș
Ț
ț
Ť
ť
Ú
ú
Ù
ù
Û
û
Ü
ü
Ũ
ũ
Ů
ů
Ǔ
ǔ
Ū
ū
ǖ
ǘ
ǚ
ǜ
Ŭ
ŭ
Ų
ų
Ű
ű
Ŵ
ŵ
Ý
ý
Ŷ
ŷ
Ÿ
ÿ
Ȳ
ȳ
Ź
ź
Ž
ž
Ż
ż
Æ
æ
Ǣ
ǣ
Ø
ø
Œ
œ
ß
Ð
ð
Þ
þ
Ə
ə
서식 지정
링크
문단 제목
목록
파일
각주
토론
설명
입력하는 내용
문서에 나오는 결과
기울임꼴
''기울인 글씨''
기울인 글씨
굵게
'''굵은 글씨'''
굵은 글씨
굵고 기울인 글씨
'''''굵고 기울인 글씨'''''
굵고 기울인 글씨
'''Dimensionality Reduction''' is a technique used in machine learning and data analysis to reduce the number of features (dimensions) in a dataset while preserving as much relevant information as possible. It simplifies data visualization, reduces computational costs, and helps mitigate the curse of dimensionality. ==Importance of Dimensionality Reduction== Dimensionality reduction is crucial for the following reasons: *'''Improves Model Performance:''' Reducing irrelevant or redundant features can lead to better model generalization. *'''Enhances Visualization:''' Enables data to be visualized in 2D or 3D, making patterns easier to interpret. *'''Reduces Computation Time:''' Fewer features mean faster processing and training times. *'''Mitigates the Curse of Dimensionality:''' High-dimensional data can lead to overfitting and sparse distributions. ==Types of Dimensionality Reduction== Dimensionality reduction techniques are broadly categorized into two types: ===Feature Selection=== Feature selection involves selecting a subset of the original features based on their relevance: *'''Filter Methods:''' Use statistical measures to rank and select features (e.g., correlation, chi-square test). *'''Wrapper Methods:''' Use model performance to evaluate subsets of features (e.g., forward selection, backward elimination). *'''Embedded Methods:''' Integrate feature selection within the model training process (e.g., Lasso, decision trees). ===Feature Extraction=== Feature extraction creates new features by transforming or combining the original features: *'''Principal Component Analysis (PCA):''' Projects data into a lower-dimensional space by maximizing variance. *'''t-Distributed Stochastic Neighbor Embedding (t-SNE):''' Reduces dimensions for data visualization while preserving local structures. *'''Linear Discriminant Analysis (LDA):''' Maximizes class separability for classification tasks. *'''Autoencoders:''' Neural networks designed for unsupervised feature learning. ==Example of PCA in Python== Here’s a simple example of dimensionality reduction using PCA:<syntaxhighlight lang="python"> from sklearn.decomposition import PCA import numpy as np # Example dataset data = np.array([[2.5, 2.4], [0.5, 0.7], [2.2, 2.9], [1.9, 2.2], [3.1, 3.0]]) # Apply PCA to reduce dimensions to 1 pca = PCA(n_components=1) reduced_data = pca.fit_transform(data) print("Reduced data:", reduced_data) </syntaxhighlight> ==Applications of Dimensionality Reduction== Dimensionality reduction is applied in various domains: *'''Image Processing:''' Compressing high-resolution images while retaining key features. *'''Natural Language Processing (NLP):''' Reducing word vector dimensions for text classification or sentiment analysis. *'''Genomics:''' Simplifying gene expression data to identify key markers. *'''Anomaly Detection:''' Reducing noise to focus on outliers. ==Advantages== *'''Improved Interpretability:''' Simplifies complex datasets for easier understanding. *'''Enhanced Model Performance:''' Reduces overfitting by removing redundant or irrelevant features. *'''Faster Computation:''' Accelerates algorithms by reducing the size of the input data. ==Limitations== *'''Loss of Information:''' Some relevant information may be lost during the dimensionality reduction process. *'''Complexity in Feature Extraction:''' Transformations can make features harder to interpret. *'''Technique Sensitivity:''' Results may vary significantly depending on the chosen method. ==Related Concepts and See Also== *[[Principal Component Analysis]] *[[t-SNE]] *[[Autoencoders]] *[[Feature Selection]] *[[Feature Engineering]] *[[Curse of Dimensionality]] *[[Linear Discriminant Analysis]] *[[Machine Learning]] [[분류:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록