익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
K-최근접 이웃
편집하기 (부분)
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
==주요 특징== *'''비모수적(non-parametric)''': kNN은 데이터에 대해 특정 함수 형태를 가정하지 않는다. 이는 여러 유형의 데이터에 대해 유연하게 적용할 수 있어 강력한 이점을 제공하지만, 반대로 데이터에 지나치게 적합되는 '''과적합(overfitting)''' 문제를 일으킬 수 있다. *'''훈련 과정이 없음''': kNN은 사전 학습(training) 단계가 없다. 즉, 모델이 학습되지 않으며, 예측할 때 직접 계산을 수행한다. 이러한 특성 때문에 '''게으른 학습(lazy learning)''' 또는 '''인스턴스 기반 학습(instance-based learning)''' 알고리즘으로도 불린다. *'''예측 시 느림''': 훈련된 모델을 미리 저장하지 않기 때문에 예측 단계에서 모든 데이터를 참고해야 하며, 특히 데이터셋이 클수록 많은 시간이 소요된다. 이는 예측이 빠른 다른 알고리즘에 비해 단점으로 작용할 수 있다. *'''널리 사용됨''': 직관적이고 이해하기 쉬운 알고리즘으로, 다양한 분류와 회귀 문제에 활용된다.
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록