익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
분류:Data Science
편집하기
IT 위키
이름공간
분류
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
고급
특수 문자
도움말
문단 제목
2단계
3단계
4단계
5단계
형식
넣기
라틴 문자
확장 라틴 문자
IPA 문자
기호
그리스 문자
그리스어 확장
키릴 문자
아랍 문자
아랍어 확장
히브리 문자
뱅골어
타밀어
텔루구어 문자
싱할라 문자
데바나가리어
구자라트 문자
태국어
라오어
크메르어
캐나다 원주민 언어
룬 문자
Á
á
À
à
Â
â
Ä
ä
Ã
ã
Ǎ
ǎ
Ā
ā
Ă
ă
Ą
ą
Å
å
Ć
ć
Ĉ
ĉ
Ç
ç
Č
č
Ċ
ċ
Đ
đ
Ď
ď
É
é
È
è
Ê
ê
Ë
ë
Ě
ě
Ē
ē
Ĕ
ĕ
Ė
ė
Ę
ę
Ĝ
ĝ
Ģ
ģ
Ğ
ğ
Ġ
ġ
Ĥ
ĥ
Ħ
ħ
Í
í
Ì
ì
Î
î
Ï
ï
Ĩ
ĩ
Ǐ
ǐ
Ī
ī
Ĭ
ĭ
İ
ı
Į
į
Ĵ
ĵ
Ķ
ķ
Ĺ
ĺ
Ļ
ļ
Ľ
ľ
Ł
ł
Ń
ń
Ñ
ñ
Ņ
ņ
Ň
ň
Ó
ó
Ò
ò
Ô
ô
Ö
ö
Õ
õ
Ǒ
ǒ
Ō
ō
Ŏ
ŏ
Ǫ
ǫ
Ő
ő
Ŕ
ŕ
Ŗ
ŗ
Ř
ř
Ś
ś
Ŝ
ŝ
Ş
ş
Š
š
Ș
ș
Ț
ț
Ť
ť
Ú
ú
Ù
ù
Û
û
Ü
ü
Ũ
ũ
Ů
ů
Ǔ
ǔ
Ū
ū
ǖ
ǘ
ǚ
ǜ
Ŭ
ŭ
Ų
ų
Ű
ű
Ŵ
ŵ
Ý
ý
Ŷ
ŷ
Ÿ
ÿ
Ȳ
ȳ
Ź
ź
Ž
ž
Ż
ż
Æ
æ
Ǣ
ǣ
Ø
ø
Œ
œ
ß
Ð
ð
Þ
þ
Ə
ə
서식 지정
링크
문단 제목
목록
파일
각주
토론
설명
입력하는 내용
문서에 나오는 결과
기울임꼴
''기울인 글씨''
기울인 글씨
굵게
'''굵은 글씨'''
굵은 글씨
굵고 기울인 글씨
'''''굵고 기울인 글씨'''''
굵고 기울인 글씨
The field of '''Data Science''' encompasses a wide range of concepts, techniques, and tools focused on extracting insights and knowledge from data. It involves interdisciplinary approaches from statistics, computer science, mathematics, and domain-specific expertise to process, analyze, and interpret complex datasets. Data Science is applied across various industries, including healthcare, finance, marketing, and technology, to make data-driven decisions, predict trends, and drive innovations. ==Common Topics in Data Science== *'''Machine Learning''': Techniques and algorithms that allow computers to learn from data, such as supervised and unsupervised learning, reinforcement learning, and deep learning. *'''Statistics''': Mathematical principles used to analyze data, draw conclusions, and make predictions, including probability, distributions, and hypothesis testing. *'''Big Data''': Handling, storing, and processing large volumes of data, typically using distributed computing frameworks like Hadoop and Spark. *'''Data Engineering''': Building and maintaining infrastructure for data generation, storage, and retrieval, including data pipelines, ETL processes, and databases. *'''Data Visualization''': Creating visual representations of data to communicate findings effectively using tools like Matplotlib, Tableau, and Power BI. *'''Natural Language Processing (NLP)''': Techniques for analyzing and interpreting human language data, used in applications like sentiment analysis, chatbots, and language translation. *'''Business Intelligence (BI)''': Gathering and analyzing business data to support strategic decision-making, often using data warehousing and reporting tools. ==Data Science Tools and Languages== Data scientists use a variety of tools and languages to process and analyze data: *'''Programming Languages''': Python, R, SQL, and Julia are commonly used for data manipulation, analysis, and model development. *'''Libraries and Frameworks''': Scikit-learn, TensorFlow, Keras, PyTorch for machine learning; Pandas, NumPy for data manipulation; Matplotlib, Seaborn for visualization. *'''Big Data Technologies''': Apache Hadoop, Apache Spark, and Apache Kafka for handling large datasets and real-time data processing. *'''Data Storage''': Relational databases (MySQL, PostgreSQL), NoSQL databases (MongoDB, Cassandra), and cloud storage (AWS S3, Google Cloud Storage). ==Categories and Related Fields== Data Science is related to and overlaps with other fields, such as: *'''Artificial Intelligence (AI)''': The broader field focused on building intelligent systems capable of performing tasks that typically require human intelligence. *'''Data Mining''': Extracting patterns and knowledge from large datasets, often involving techniques from machine learning and statistics. *'''Operations Research''': Analyzing and optimizing complex systems, often using mathematical modeling to make efficient decisions. *'''Business Analytics''': Applying statistical and data analysis techniques specifically for business insights and strategies. Data Science continues to evolve, driven by advancements in computing, availability of data, and growing demands for data-driven insights. It is a dynamic field that continuously incorporates new tools, methodologies, and applications.
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록