익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Asymptotic Notation
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Asymptotic Notation''' is a mathematical tool used to describe the limiting behavior of an algorithm's complexity as the input size approaches infinity. It provides a way to analyze and compare algorithm efficiency by focusing on the growth rate of time or space complexity. ==Key Asymptotic Notations== Asymptotic notation expresses how an algorithm's performance scales with input size. The most common types are: ===Big O Notation (O)=== *'''Definition:''' Represents an upper bound on an algorithm’s growth rate (worst-case complexity). *'''Example:''' If an algorithm has O(n²) complexity, its runtime does not exceed a constant multiple of n² for large n. *'''Usage:''' Ensures an algorithm will not perform worse than the given bound. ===Big Omega Notation (Ω)=== *'''Definition:''' Represents a lower bound on an algorithm’s growth rate (best-case complexity). *'''Example:''' If an algorithm has Ω(n log n) complexity, its runtime is at least proportional to n log n. *'''Usage:''' Guarantees that an algorithm will take at least the given time. ===Big Theta Notation (Θ)=== *'''Definition:''' Represents a tight bound (both upper and lower) on an algorithm’s growth rate. *'''Example:''' If an algorithm has Θ(n log n) complexity, its runtime grows at exactly that rate. *'''Usage:''' Defines an algorithm’s precise asymptotic behavior. ===Little o Notation (o)=== *'''Definition:''' Represents an upper bound that is not tight (strictly smaller growth rate). *'''Example:''' If an algorithm has o(n²) complexity, its runtime grows slower than n² but not necessarily at a fixed rate. ===Little Omega Notation (ω)=== *'''Definition:''' Represents a lower bound that is not tight (strictly greater growth rate). *'''Example:''' If an algorithm has ω(n log n) complexity, its runtime grows faster than n log n. ==Comparison of Notations== {| class="wikitable" !Notation!!Description!!Example Meaning |- |O(f(n))||Upper bound (worst-case)||O(n²) means runtime is at most proportional to n². |- |Ω(f(n))||Lower bound (best-case)||Ω(n log n) means runtime is at least proportional to n log n. |- |Θ(f(n))||Tight bound||Θ(n log n) means runtime is both at most and at least proportional to n log n. |- |o(f(n))||Strictly smaller upper bound||o(n²) means runtime grows slower than n². |- |ω(f(n))||Strictly greater lower bound||ω(n log n) means runtime grows faster than n log n. |} ==Examples== *'''Linear Search''' **Complexity: O(n) (worst case), Ω(1) (best case). *'''Binary Search''' **Complexity: O(log n), Ω(1). *'''Merge Sort''' **Complexity: O(n log n), Θ(n log n). ==Applications== Asymptotic notation is widely used in: *'''Algorithm Analysis:''' Comparing different algorithms based on efficiency. *'''Data Structures:''' Evaluating operations such as searching, insertion, and deletion. *'''Computational Complexity Theory:''' Classifying problems into P, NP, NP-complete, etc. ==See Also== *[[Big O Notation]] *[[Computational Complexity]] *[[Time Complexity]] *[[Space Complexity]] *[[Algorithm Complexity]] *[[Master Theorem]] [[Category:Algorithm]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록