익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Big O Notation
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Big O Notation''' is a mathematical concept used to describe the performance or complexity of an algorithm. It provides an upper bound on the growth rate of an algorithm's time or space requirements as the size of the input increases. Big O notation is widely used in computer science to analyze and compare algorithms. ==Key Concepts== *'''Growth Rate:''' Describes how an algorithm's performance scales with the size of the input (denoted as n). *'''Asymptotic Analysis:''' Focuses on the behavior of an algorithm as the input size approaches infinity. *'''Upper Bound:''' Big O provides the worst-case scenario for an algorithm's growth rate. ==Common Big O Classes== Big O notation is categorized into different classes based on growth rates: {| class="wikitable" !Notation!!Name!!Description!!Example |- |O(1)||Constant||Performance is independent of the input size.||Accessing an element in an array. |- |O(log n)||Logarithmic||Performance grows logarithmically with input size.||Binary search. |- |O(n)||Linear||Performance grows proportionally with input size.||Iterating through a list. |- |O(n log n)||Linearithmic||Performance grows faster than linear but slower than quadratic.||Merge sort, quicksort (average case). |- |O(n<sup>2</sup>)||Quadratic||Performance grows quadratically with input size.||Nested loops (e.g., bubble sort). |- |O(2<sup>n</sup>)||Exponential||Performance doubles with each additional input.||Solving the traveling salesman problem (brute force). |- |O(n!)||Factorial||Performance grows factorially with input size.||Permutation generation. |} ==How Big O Works== Big O focuses on the most significant term in an algorithm's complexity, ignoring constants and lower-order terms. For example: *5n<sup>2</sup> + 3n + 2 is simplified to O(n<sup>2</sup>), as n<sup>2</sup> dominates the growth rate for large n. ==Applications of Big O== Big O notation is used in various contexts: *'''Algorithm Analysis:''' Evaluating the efficiency of algorithms in terms of time and space complexity. *'''Performance Optimization:''' Identifying bottlenecks and improving code efficiency. *'''Data Structures:''' Comparing the performance of different data structures for specific operations (e.g., searching, insertion). ==Examples== *'''Linear Search:''' **Iterates through an array to find an element. **Complexity: O(n) (in the worst case, it checks every element). *'''Binary Search:''' **Divides a sorted array into halves to find an element. **Complexity: O(log n) (reduces the search space by half at each step). *'''Sorting Algorithms:''' **Merge Sort: O(n log n) (efficient for large datasets). **Bubble Sort: O(n^2) (inefficient for large datasets due to nested loops). ==Advantages of Big O== *'''Comparative Analysis:''' Enables fair comparison of algorithms' efficiency. *'''Focus on Scalability:''' Highlights how algorithms perform with large input sizes. *'''Predictive Insights:''' Helps anticipate performance bottlenecks. ==Limitations of Big O== *'''Ignores Constants:''' Real-world performance may vary due to constant factors. *'''Best/Worst Case Focus:''' Big O typically analyzes the worst-case scenario, not average or best cases. *'''Hardware Dependency:''' Big O does not account for hardware-specific factors like cache performance or parallelism. ==Related Notations== In addition to Big O, other notations are used to describe algorithm complexity: *'''Big Omega (Ω):''' Provides a lower bound for the best-case performance. *'''Theta (Θ):''' Provides a tight bound for both upper and lower growth rates. *'''Little o:''' Describes an upper bound that is not tight. *'''Little omega (ω):''' Describes a lower bound that is not tight. ==See Also== *[[Algorithm Complexity]] *[[Asymptotic Analysis]] *[[Time Complexity]] *[[Space Complexity]] *[[Data Structures]] *[[Sorting Algorithms]] *[[Search Algorithms]] [[분류:Theory of Computation]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록