익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Collaborative Filtering
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
Collaborative Filtering is a popular technique in [[Recommender System|recommender systems]] that predicts a user’s interest by identifying patterns from the behavior and preferences of similar users or items. It relies on the assumption that if users have agreed on past items, they are likely to agree on similar items in the future. ==Types of Collaborative Filtering== Collaborative Filtering can be divided into two main approaches: *'''User-Based Collaborative Filtering''': Recommends items to a user based on the preferences of similar users. For example, if two users have similar movie ratings, one user’s highly rated movies may be recommended to the other. *'''Item-Based Collaborative Filtering''': Recommends items similar to those the user has already liked. This approach is based on item similarity rather than user similarity; for example, if a user enjoyed a specific movie, similar movies are recommended. ==How Collaborative Filtering Works== Collaborative Filtering works by creating a user-item matrix that records user interactions with items (e.g., ratings, clicks, or purchases). It then uses similarity measures to find patterns: *'''Similarity Measures''': Common similarity metrics include cosine similarity, Jaccard index, and Pearson correlation. *'''Neighborhood Formation''': Based on similarity, a neighborhood of similar users or items is formed to inform recommendations. *'''Prediction Generation''': Using the neighborhood information, the system predicts a user’s interest in an item by aggregating preferences from similar users or items. ==Applications of Collaborative Filtering== Collaborative Filtering is widely used in recommender systems across various platforms: *'''E-commerce''': Suggests products based on other users' purchases or ratings. *'''Streaming Services''': Recommends movies or songs based on similar user preferences. *'''Social Media''': Suggests friends or connections based on shared interests or common connections. *'''News Aggregation''': Curates articles based on reading preferences of similar users. ==Advantages of Collaborative Filtering== Collaborative Filtering has several benefits: *'''Personalization''': Provides highly personalized recommendations based on user preferences. *'''No Need for Item Metadata''': Does not require detailed information about items, relying solely on user interactions. *'''Adaptability''': As user preferences change, the model adapts based on recent behavior. ==Challenges in Collaborative Filtering== While effective, Collaborative Filtering faces some challenges: *'''Data Sparsity''': The user-item matrix can be sparse if users have interacted with only a small subset of items, leading to limited data for recommendations. *'''Cold Start Problem''': New users and new items lack interaction data, making it challenging to generate recommendations. *'''Scalability''': As the number of users and items grows, it becomes computationally intensive to calculate similarities across the entire matrix. ==Alternative Approaches== When Collaborative Filtering faces limitations, other techniques can complement or replace it: *'''Content-Based Filtering''': Recommends items based on item attributes, such as genres or categories, rather than user interactions. *'''Hybrid Systems''': Combines collaborative and content-based filtering for more robust recommendations, especially in addressing cold start issues. *'''Matrix Factorization''': Decomposes the user-item matrix into latent factors, reducing data sparsity issues. ==See Also== *[[User-Based Collaborative Filtering]] *[[Item-Based Collaborative Filtering]] *[[Content-Based Filtering]] *[[Cold Start Problem]] *[[Matrix Factorization]] *[[Recommender System]] [[Category:Data Science]] [[Category:Artificial Intelligence]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록