익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Computational Problem
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Computational Problem''' is a problem that can be solved using an algorithm executed on a computational model, such as a Turing machine. It involves defining an input, processing it through a set of rules or algorithms, and obtaining an output. ==Key Concepts== *'''Input:''' A well-defined set of data that the problem operates on. *'''Output:''' The expected result derived from the given input. *'''Algorithm:''' A finite sequence of steps that transforms the input into the output. *'''Complexity:''' The amount of computational resources (time and space) required to solve the problem. ==Types of Computational Problems== {| class="wikitable" !Type!!Description!!Example |- |'''Decision Problem'''||A problem with a yes/no answer.||"Is a given number prime?" |- |'''Function Problem'''||A problem where the output is a computed value.||"Find the greatest common divisor of two numbers." |- |'''Optimization Problem'''||A problem where the goal is to find the best solution among many.||"Find the shortest path between two cities." |} ==Examples== *'''Sorting Problem''' **Input: A list of numbers. **Output: The list sorted in ascending order. **Example Algorithm: Merge Sort, Quick Sort. **Complexity: O(n log n). *'''Graph Traversal Problem''' **Input: A graph and a starting node. **Output: A traversal order of nodes. **Example Algorithm: Breadth-First Search (BFS), Depth-First Search (DFS). **Complexity: O(V + E) (where V is the number of vertices and E is the number of edges). *'''Pathfinding Problem''' **Input: A weighted graph and two nodes. **Output: The shortest path between the nodes. **Example Algorithm: Dijkstra’s Algorithm, A* Algorithm. **Complexity: O((V + E) log V). ==Complexity Classes== Computational problems are categorized based on the resources required to solve them. {| class="wikitable" !Complexity Class!!Description!!Example Problems |- |P||Problems solvable in polynomial time.||Sorting, shortest path (Dijkstra’s algorithm). |- |NP||Problems verifiable in polynomial time.||Traveling Salesman Problem, Boolean Satisfiability Problem (SAT). |- |NP-complete||Hardest problems in NP; if one is solved in polynomial time, all NP problems can be solved in polynomial time.||3-SAT, Hamiltonian Cycle Problem. |- |NP-hard||At least as hard as NP-complete problems, but not necessarily in NP.||Halting Problem, TSP with arbitrary constraints. |} ==Applications== Computational problems are fundamental in: *'''Cryptography:''' Prime factorization, hash functions. *'''Artificial Intelligence:''' Machine learning optimization, heuristic search. *'''Operations Research:''' Linear programming, supply chain optimization. *'''Computer Vision:''' Object recognition, image segmentation. ==Open Problems== Some computational problems remain unsolved or require better solutions: *'''P vs NP Problem:''' One of the biggest open questions in computer science, asking whether every problem verifiable in polynomial time (NP) can also be solved in polynomial time (P). *'''Graph Isomorphism Problem:''' Finding an efficient algorithm to determine whether two graphs are structurally identical. *'''Integer Factorization:''' Used in cryptography, with RSA security relying on its difficulty. ==See Also== *[[Algorithm]] *[[Computational Complexity]] *[[Decision Problem]] *[[NP-Complete Problems]] *[[Turing Machine]] *[[Big O Notation]] [[Category:Algorithm]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록