익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Confounder (Data Science)
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Confounder''' is a variable that influences both the dependent variable and one or more independent variables, potentially leading to a spurious association or bias in the analysis. In data science, identifying and addressing confounders is crucial to ensure the validity of causal inferences and statistical models. ==Overview== Confounders introduce bias by creating a false relationship between the variables of interest. If not properly controlled, they can lead to incorrect conclusions about causation and correlation. For example, in a study analyzing the relationship between ice cream sales and drowning incidents, a confounder could be the temperature. Higher temperatures increase both ice cream sales and drowning incidents, but without considering temperature, one might incorrectly conclude that ice cream causes drowning. ==Key Characteristics== A variable is considered a confounder if: *It is associated with the independent variable (exposure). *It influences the dependent variable (outcome). *It is not part of the causal pathway between the independent and dependent variables. ==Examples== #'''Health Studies:''' #*Analyzing the effect of smoking on lung cancer. #*Age could act as a confounder if older populations are more likely to smoke and also have a higher risk of lung cancer. #'''E-commerce:''' #*Evaluating the impact of discounts on sales. Seasonal factors, such as holidays, may confound the relationship by influencing both the likelihood of discounts and customer purchasing behavior. ==Methods to Address Confounders== Several techniques can help mitigate the impact of confounders: *'''Randomization:''' Randomly assigning participants to groups ensures confounders are evenly distributed. *'''Stratification:''' Analyzing data within subgroups to control for confounder effects. *'''Matching:''' Pairing observations with similar confounder characteristics across groups. *'''Regression Models:''' Including potential confounders as covariates in regression analysis. *'''Propensity Score Matching:''' Balancing confounders between groups to mimic randomized experiments. ==Importance in Data Science== In data science, confounders can impact: *'''Causal Inference:''' Confounders obscure true causal relationships, making it challenging to determine the actual effect of an independent variable. *'''Predictive Modeling:''' They may lead to overfitting or biased predictions if not properly accounted for. *'''A/B Testing:''' Confounders can distort the evaluation of experimental treatments, leading to incorrect decisions. ==Limitations== *Identifying confounders requires domain expertise and may not always be straightforward. *Residual confounding can occur if important confounders are overlooked or inadequately measured. *Over-adjusting for non-confounding variables can reduce model interpretability. ==See Also== *[[Causation and Correlation]] *[[Bias (Statistics)]] *[[Causal Inference]] *[[Regression Analysis]] *[[Propensity Score Matching]] [[Category:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록