익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Confusion Matrix
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
고급
특수 문자
도움말
문단 제목
2단계
3단계
4단계
5단계
형식
넣기
라틴 문자
확장 라틴 문자
IPA 문자
기호
그리스 문자
그리스어 확장
키릴 문자
아랍 문자
아랍어 확장
히브리 문자
뱅골어
타밀어
텔루구어 문자
싱할라 문자
데바나가리어
구자라트 문자
태국어
라오어
크메르어
캐나다 원주민 언어
룬 문자
Á
á
À
à
Â
â
Ä
ä
Ã
ã
Ǎ
ǎ
Ā
ā
Ă
ă
Ą
ą
Å
å
Ć
ć
Ĉ
ĉ
Ç
ç
Č
č
Ċ
ċ
Đ
đ
Ď
ď
É
é
È
è
Ê
ê
Ë
ë
Ě
ě
Ē
ē
Ĕ
ĕ
Ė
ė
Ę
ę
Ĝ
ĝ
Ģ
ģ
Ğ
ğ
Ġ
ġ
Ĥ
ĥ
Ħ
ħ
Í
í
Ì
ì
Î
î
Ï
ï
Ĩ
ĩ
Ǐ
ǐ
Ī
ī
Ĭ
ĭ
İ
ı
Į
į
Ĵ
ĵ
Ķ
ķ
Ĺ
ĺ
Ļ
ļ
Ľ
ľ
Ł
ł
Ń
ń
Ñ
ñ
Ņ
ņ
Ň
ň
Ó
ó
Ò
ò
Ô
ô
Ö
ö
Õ
õ
Ǒ
ǒ
Ō
ō
Ŏ
ŏ
Ǫ
ǫ
Ő
ő
Ŕ
ŕ
Ŗ
ŗ
Ř
ř
Ś
ś
Ŝ
ŝ
Ş
ş
Š
š
Ș
ș
Ț
ț
Ť
ť
Ú
ú
Ù
ù
Û
û
Ü
ü
Ũ
ũ
Ů
ů
Ǔ
ǔ
Ū
ū
ǖ
ǘ
ǚ
ǜ
Ŭ
ŭ
Ų
ų
Ű
ű
Ŵ
ŵ
Ý
ý
Ŷ
ŷ
Ÿ
ÿ
Ȳ
ȳ
Ź
ź
Ž
ž
Ż
ż
Æ
æ
Ǣ
ǣ
Ø
ø
Œ
œ
ß
Ð
ð
Þ
þ
Ə
ə
서식 지정
링크
문단 제목
목록
파일
각주
토론
설명
입력하는 내용
문서에 나오는 결과
기울임꼴
''기울인 글씨''
기울인 글씨
굵게
'''굵은 글씨'''
굵은 글씨
굵고 기울인 글씨
'''''굵고 기울인 글씨'''''
굵고 기울인 글씨
'''Confusion Matrix''' is a tool used in data science and machine learning to evaluate the performance of a classification model. It provides a tabular summary of the model's predictions against the actual values, breaking down the number of correct and incorrect predictions for each class. ==Structure== The confusion matrix is typically a 2x2 table for binary classification, with the following layout: *'''True Positives (TP)''': Correctly predicted positive instances *'''False Positives (FP)''': Incorrectly predicted positive instances (actual class is negative) *'''True Negatives (TN)''': Correctly predicted negative instances *'''False Negatives (FN)''': Incorrectly predicted negative instances (actual class is positive) ==Example== Consider a model that classifies emails as spam or not spam: {| class="wikitable" ! rowspan="2" |Actual ! colspan="2" |Predicted |- !Positive (Spam)!!Negative (Not Spam) |- |Positive (Spam)||True Positives (TP)||False Negatives (FN) |- |Negative (Not Spam)||False Positives (FP)||True Negatives (TN) |} ==Importance of the Confusion Matrix== The confusion matrix is valuable for understanding the types of errors a model makes and is especially useful when: *The dataset is imbalanced, allowing for insights beyond accuracy alone *There are different costs associated with false positives and false negatives ==Metrics Derived from the Confusion Matrix== Several key metrics can be derived from the confusion matrix to evaluate model performance: *'''Accuracy''': (TP + TN) / (TP + TN + FP + FN) *'''Precision''': TP / (TP + FP) *'''Recall''': TP / (TP + FN) *'''F1 Score''': 2 * (Precision * Recall) / (Precision + Recall) ==Limitations== The confusion matrix has limitations, such as: *Limited utility in multi-class settings without additional transformations *Can be less informative when class imbalance is extreme, as it may not fully capture the model’s bias toward one class ==Conclusion== The confusion matrix provides a comprehensive view of classification model performance, particularly in binary classification. It enables practitioners to examine each type of error and decide on the best metrics to focus on based on the use case. ==See Also== *[[Accuracy]] *[[Precision (Data Science)|Precision]] *[[Recall (Data Science)|Recall]] *[[F1 Score]] *[[Classification Metrics]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록