익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Decision Tree
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Decision Tree''' A '''Decision Tree''' is a supervised learning algorithm used for both classification and regression tasks. It structures decisions as a tree-like model, where each internal node represents a test on a feature, each branch represents an outcome of that test, and each leaf node represents a class label or prediction. Decision Trees are highly interpretable and can work with both categorical and numerical data, making them widely applicable across various fields. ==Key Concepts== *'''Node Splitting''': The process of dividing data at each node based on a feature value that best separates the classes or reduces prediction error. Popular criteria for splitting include: **'''Gini Impurity''': Measures the likelihood of an incorrect classification by a randomly chosen element; lower values indicate better splits. **'''Entropy''': Quantifies data disorder, where a decrease in entropy signifies an increase in information gain. *'''Recursive Partitioning''': The tree is constructed by repeatedly splitting subsets of data at each node, creating branches until stopping criteria are met. *'''Pruning''': A technique for trimming the tree by removing nodes that offer minimal contribution to accuracy, which helps in reducing overfitting. ==Common Applications== Decision Trees are used across industries due to their transparent and straightforward structure: *'''Healthcare''': Used for clinical decision-making and diagnosis, where interpretability is crucial for understanding factors influencing predictions. *'''Finance''': Applied in credit scoring, risk analysis, and fraud detection, providing clear decision paths for assessment. *'''Marketing''': Assists in customer segmentation and identifying factors leading to churn, allowing for targeted marketing strategies. *'''Manufacturing''': Used in quality control to detect defect patterns and in predictive maintenance to estimate equipment lifespan. ==Strengths== *'''High Interpretability''': The visual and rule-based nature of Decision Trees makes them easy to understand and communicate, even to non-technical stakeholders. *'''Minimal Data Preparation''': Unlike many models, Decision Trees do not require feature scaling or normalization, making them compatible with raw datasets. *'''Versatile with Feature Types''': Can handle both categorical and numerical data directly, offering flexibility in data preparation. ==Limitations== *'''Prone to Overfitting''': Decision Trees can grow overly complex, capturing noise in the training data, which impacts their ability to generalize. *'''Instability with Small Variations''': A slight change in data can lead to a completely different tree structure, affecting model consistency. *'''Bias with Imbalanced Data''': Without adjustment, Decision Trees may favor majority classes, leading to biased predictions in imbalanced datasets. ==Techniques for Improved Performance== *'''Pruning''': Reduces the tree size by cutting off non-informative branches, helping to prevent overfitting. *'''Ensemble Methods''': Combining Decision Trees in methods like Random Forests or Gradient Boosting reduces individual tree bias and improves accuracy. *'''Hyperparameter Tuning''': Adjusting parameters like maximum depth and minimum samples per leaf can help control tree growth and balance performance. ==See Also== *[[Random Forest]] *[[Gradient Boosting]] *[[Support Vector Machine]] *[[Logistic Regression]] [[Category:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록