익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Descriptive Analytics
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Descriptive Analytics''' is a type of data analysis that focuses on summarizing historical data to identify patterns, trends, and insights. It is the foundation of data-driven decision-making, helping organizations understand what has happened in the past by providing a clear view of data in its historical context. ==Key Concepts== *'''Historical Analysis:''' Descriptive analytics analyzes past events to provide a summary of what has occurred. *'''Data Aggregation:''' Collecting and organizing raw data into a summarized and structured format. *'''Data Visualization:''' Representing data through charts, graphs, and dashboards to make insights more accessible. *'''Business Reporting:''' Generating periodic reports that summarize business performance and key metrics. ==Techniques Used in Descriptive Analytics== Descriptive analytics employs a variety of techniques, including: *'''Data Aggregation:''' **Summing, averaging, or counting data points to provide an overview. *'''Data Mining:''' **Extracting patterns from large datasets using statistical methods. *'''Data Visualization:''' **Using visual tools such as bar charts, line graphs, and heatmaps to present insights. *'''Statistical Measures:''' **Applying measures like mean, median, mode, standard deviation, and variance to understand data distributions. ==Examples of Descriptive Analytics== Descriptive analytics is widely used across various industries: {| class="wikitable" !Industry!!Example |- |'''Retail'''||Analyzing monthly sales data to identify best-selling products. |- |'''Healthcare'''||Monitoring patient records to track disease incidence rates over time. |- |'''Finance'''||Summarizing quarterly financial performance to assess profitability trends. |- |'''E-commerce'''||Evaluating website traffic and user behavior metrics to optimize marketing campaigns. |} ==Tools for Descriptive Analytics== Several tools and platforms are commonly used for descriptive analytics: *'''Spreadsheets:''' Microsoft Excel, Google Sheets. *'''Business Intelligence Tools:''' Tableau, Power BI, Looker. *'''Statistical Software:''' R, SAS, SPSS. *'''Data Warehousing Platforms:''' Snowflake, Amazon Redshift, Google BigQuery. ==Advantages== *'''Clear Insights:''' Provides a clear and concise summary of historical data. *'''Informed Decision-Making:''' Helps stakeholders understand past performance to guide future actions. *'''Broad Applicability:''' Can be applied across industries and functional areas. *'''Ease of Use:''' Relies on straightforward data analysis and visualization techniques. ==Limitations== *'''Backward-Looking:''' Focuses only on past events without predicting future outcomes. *'''Limited Predictive Power:''' Cannot provide insights into why events happened or what might happen next. *'''Dependence on Data Quality:''' Accurate insights depend on the quality and completeness of historical data. ==Applications== Descriptive analytics is widely used in: *'''Business Operations:''' Tracking KPIs and operational metrics. *'''Marketing:''' Analyzing campaign performance and customer behavior. *'''Healthcare:''' Summarizing patient outcomes and hospital efficiency. *'''Supply Chain Management:''' Monitoring inventory levels and shipment statuses. ==Comparison with Other Types of Analytics== {| class="wikitable" !Type!!Focus!!Example |- |'''Descriptive Analytics'''||What happened?||Monthly sales report showing trends. |- |'''Diagnostic Analytics'''||Why did it happen?||Root cause analysis of a sales decline. |- |'''Predictive Analytics'''||What will happen?||Forecasting future sales based on trends. |- |'''Prescriptive Analytics'''||What should we do?||Recommendations for inventory optimization. |} ==See Also== *[[Diagnostic Analytics]] *[[Predictive Analytics]] *[[Prescriptive Analytics]] *[[Business Intelligence]] *[[Data Visualization]] *[[Key Performance Indicators (KPIs)]] [[Category:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록