익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Distributed Database
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Distributed Database''' is a collection of databases distributed across multiple physical locations that function as a single logical database. Each site can operate independently while participating in a unified database system through communication over a network. ==Key Concepts== *'''Data Distribution:''' Data is distributed across multiple sites based on factors like performance, reliability, and locality. *'''Transparency:''' Users interact with the distributed database as if it were a single database, regardless of the underlying distribution. *'''Replication:''' Data is duplicated across multiple sites to improve fault tolerance and availability. *'''Partitioning:''' Data is divided into subsets, each stored at a specific location. ==Characteristics== Distributed databases are defined by the following characteristics: *'''Distributed Data Storage:''' Data is stored on multiple nodes or sites. *'''Autonomy:''' Each node can function independently and manage its local database. *'''Transparency:''' **'''Location Transparency:''' Users do not need to know where data is physically stored. **'''Replication Transparency:''' Users are unaware of data being replicated across sites. **'''Fragmentation Transparency:''' Users do not need to know how data is partitioned. *'''Scalability:''' The system can grow by adding more nodes. *'''Fault Tolerance:''' Replication and redundancy provide resilience to failures. ==Types of Distributed Databases== Distributed databases can be classified based on their architecture: #'''Homogeneous Distributed Database:''' #*All nodes use the same database management system (DBMS). #*Example: A PostgreSQL cluster. #'''Heterogeneous Distributed Database:''' #*Nodes may use different DBMSs but are integrated into a single system. #*Example: A system integrating MySQL and Oracle databases. #'''Federated Database:''' #*Autonomous databases are integrated through a middleware layer. #*Example: A research database integrating multiple institutional datasets. ==Advantages== *'''Improved Performance:''' Data is stored closer to where it is needed, reducing access time. *'''Fault Tolerance:''' Data replication ensures system availability during node failures. *'''Scalability:''' The system can handle growing amounts of data by adding more nodes. *'''Resource Sharing:''' Enables sharing of hardware, software, and data resources. ==Limitations== *'''Complexity:''' Managing a distributed database is more complex than a centralized one. *'''Consistency:''' Maintaining consistency across nodes in a distributed system can be challenging. *'''Communication Overhead:''' Data synchronization and query execution across nodes incur network overhead. *'''Latency:''' Network delays can affect query response times. ==Example: Distributed Query in a Distributed Database== Consider a distributed database with two nodes: *Node 1 stores employee data. *Node 2 stores department data. Query: Retrieve the names of employees in the "Sales" department. ===Steps=== {| class="wikitable" !Step!!Action!!Performed On |- |1||Parse query: SELECT employees.name FROM employees JOIN departments ON employees.dept_id = departments.dept_id WHERE departments.name = 'Sales'.||Query Coordinator |- |2||Decompose query into sub-queries: *Query 1: Retrieve department IDs for "Sales" from Node 2. *Query 2: Retrieve employee names for the matching department IDs from Node 1. || Query Coordinator |- |3||Execute sub-queries on respective nodes: *Node 2 returns department IDs for "Sales." *Node 1 returns employee names for matching department IDs. || Node 1, Node 2 |- |4||Combine results and return final output.||Query Coordinator |} ==Data Distribution Techniques== Distributed databases use the following techniques to distribute data: *'''Replication:''' **Duplicates data across multiple sites. **Improves fault tolerance and read performance but requires synchronization. *'''Fragmentation:''' **Divides data into fragments, stored at different sites. **Types: ***'''Horizontal Fragmentation:''' Divides a table into rows. ***'''Vertical Fragmentation:''' Divides a table into columns. ***'''Hybrid Fragmentation:''' Combines horizontal and vertical fragmentation. *'''Hybrid Distribution:''' **Combines replication and fragmentation to optimize performance and fault tolerance. ==Applications== Distributed databases are widely used in: *'''Global Enterprises:''' Managing geographically dispersed data. *'''Cloud Databases:''' Supporting distributed cloud-based platforms like Google Spanner and Amazon Aurora. *'''IoT Systems:''' Managing data from distributed devices. *'''Big Data Analytics:''' Processing large-scale distributed datasets. ==Challenges== Distributed databases face several challenges: *'''Data Consistency:''' Ensuring consistency across replicas while maintaining performance. *'''Network Partitioning:''' Handling situations where communication between nodes is disrupted. *'''Query Optimization:''' Efficiently executing queries across distributed nodes. *'''Security:''' Securing data transmission and storage across multiple locations. ==See Also== *[[Distributed Systems]] *[[Query Optimization]] *[[Database Replication]] *[[Sharding]] *[[CAP Theorem]] *[[Distributed Query Processing]] *[[Cloud Databases]] [[Category:Database]] [[Category:Distributed Computing]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록