익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Gain Chart
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
A Gain Chart, or Cumulative Gain Chart, is a graphical tool used to evaluate the effectiveness of a predictive model by showing the cumulative percentage of positive outcomes identified as more of the dataset is included. It helps assess how well the model ranks positive cases, particularly in applications where targeting high-value instances is essential. ==What is a Gain Chart?== A Gain Chart plots the cumulative percentage of positive outcomes (y-axis) against the cumulative percentage of the population (x-axis), ordered by model predictions. The chart compares the model’s performance to a random baseline, illustrating how much gain is achieved by using the model instead of random selection. *'''Steeper Curve''': Indicates that the model is effective at identifying positive cases early in the ranked population. *'''Random Line Baseline''': Represents a scenario where instances are selected without a model, resulting in a diagonal line. ==How to Interpret a Gain Chart== A Gain Chart provides insights into model performance and helps make targeting decisions: *A steep initial gain shows that the model captures a high proportion of positive outcomes within the first few segments of the dataset. *The closer the model's gain curve is to the top-left corner, the better the model is at ranking positive instances. *When the gain curve flattens, it suggests diminishing returns, as fewer positive cases are found in the additional population. ==Applications of Gain Charts== Gain Charts are widely used in areas where prioritizing high-value cases can improve resource efficiency: *'''Direct Marketing''': Evaluates the model’s ability to identify likely responders within a smaller customer segment, optimizing campaign resources. *'''Customer Retention''': Determines the highest-risk customers, enabling targeted retention efforts with limited resources. *'''Fraud Detection''': Assesses which portion of transactions should be flagged for further review, maximizing fraud detection within a small segment. ==Gain Chart vs. Lift Curve== While both Gain Charts and Lift Curves evaluate model effectiveness, they differ slightly: *'''Gain Chart''': Focuses on the cumulative percentage of positives captured at different selection levels, illustrating overall performance. *'''Lift Curve''': Measures the model’s improvement over random selection within each selected segment, providing insights into performance relative to baseline. ==Benefits of Using Gain Charts== Gain Charts are useful tools for model assessment and decision-making: *'''Resource Allocation Insight''': Helps determine the optimal population size to target for the highest gains. *'''Performance Comparison''': Useful for comparing different models to see which captures more positive outcomes within the same segment. ==Limitations of Gain Charts== While informative, Gain Charts have certain limitations: *'''Sensitive to Class Imbalance''': Gain can appear exaggerated in highly imbalanced datasets, making it necessary to use additional metrics for context. *'''Generalization Challenges''': Gain is specific to the dataset used, and results may not generalize to other datasets without similar class distributions. ==Related Tools and Metrics== Gain Charts are often analyzed alongside other tools to provide a comprehensive view of model performance: *'''Lift Curve''': Complements the Gain Chart by focusing on model improvement over random selection. *'''Cumulative Response Curve''': Shows the cumulative proportion of positive cases, similar to a Gain Chart but with different interpretations. *'''ROC Curve''': Useful for evaluating the trade-off between sensitivity and specificity across thresholds. ==See Also== *[[Lift Curve]] *[[Cumulative Response Curve]] *[[ROC Curve]] *[[Precision-Recall Curve]] *[[Predictive Modeling]] [[Category:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록