익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Hierarchical Clustering
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Hierarchical Clustering''' is a clustering method in machine learning and statistics that builds a hierarchy of clusters by either merging smaller clusters into larger ones (agglomerative) or dividing larger clusters into smaller ones (divisive). It is widely used for exploratory data analysis and in domains such as bioinformatics, marketing, and social network analysis. ==Types of Hierarchical Clustering== Hierarchical clustering is divided into two main types: *'''Agglomerative (Bottom-Up):''' **Starts with each data point as its own cluster. **Iteratively merges the closest clusters until all points are in a single cluster or a stopping criterion is met. *'''Divisive (Top-Down):''' **Starts with all data points in one cluster. **Iteratively splits clusters into smaller clusters until each point is its own cluster or a stopping criterion is met. ==Steps in Hierarchical Clustering== #Calculate a distance matrix that quantifies the similarity between each pair of data points (e.g., using Euclidean distance). #Apply a linkage method to define the distance between clusters. #Perform the clustering: ##For agglomerative clustering, merge the two closest clusters. ##For divisive clustering, split clusters based on a criterion. #Visualize the resulting hierarchy using a dendrogram. ===Example=== A simple example of hierarchical clustering in Python:<syntaxhighlight lang="python"> from scipy.cluster.hierarchy import dendrogram, linkage import matplotlib.pyplot as plt import numpy as np # Example dataset data = np.array([[1, 2], [2, 3], [3, 4], [10, 10], [11, 11], [12, 12]]) # Perform hierarchical clustering Z = linkage(data, method='ward') # Plot dendrogram plt.figure(figsize=(8, 4)) dendrogram(Z) plt.title("Dendrogram") plt.xlabel("Data Points") plt.ylabel("Distance") plt.show() </syntaxhighlight> ==Linkage Methods== The choice of linkage method determines how distances between clusters are calculated: *'''Single Linkage:''' Uses the minimum distance between any two points in different clusters. *'''Complete Linkage:''' Uses the maximum distance between any two points in different clusters. *'''Average Linkage:''' Uses the average distance between all pairs of points in two clusters. *'''Ward's Method:''' Minimizes the total variance within clusters. ==Advantages== *Does not require the number of clusters to be specified beforehand. *Produces a dendrogram that provides insight into the data's structure and relationships. *Can handle non-spherical clusters better than K-Means. ==Limitations== *Computationally expensive for large datasets due to the calculation of distance matrices. *Sensitive to noise and outliers, which can affect the clustering process. *Difficult to scale to very large datasets. ==Applications== Hierarchical clustering is used in various domains: *'''Bioinformatics:''' Grouping genes or proteins based on similarity. *'''Marketing:''' Segmenting customers into distinct groups for targeted strategies. *'''Document Clustering:''' Organizing documents based on textual similarity. *'''Social Network Analysis:''' Understanding community structures within networks. ==Related Concepts and See Also== *[[Clustering]] *[[Agglomerative Clustering]] *[[Divisive Clustering]] *[[K-Means]] *[[Dendrogram]] *[[Distance Metrics]] *[[Unsupervised Learning]] [[분류:Data Science]] [[분류:Machin Learning]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록