익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
K-Means
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''K-Means''' is one of the most popular unsupervised machine learning algorithms used for clustering data into distinct groups. The algorithm partitions a dataset into '''k''' clusters, where each data point belongs to the cluster with the nearest mean. It is widely used for data analysis, pattern recognition, and feature engineering. ==How K-Means Works== The K-Means algorithm follows an iterative process to assign data points to clusters and optimize the cluster centroids: #Initialize '''k''' cluster centroids randomly or using a heuristic method (e.g., K-Means++ initialization). #Assign each data point to the cluster whose centroid is nearest (based on a distance metric such as Euclidean distance). #Recalculate the centroids of each cluster as the mean of all data points assigned to that cluster. #Repeat steps 2 and 3 until the centroids converge or the maximum number of iterations is reached. ===Example=== Given a dataset, K-Means groups the points as follows:<syntaxhighlight lang="python"> from sklearn.cluster import KMeans import numpy as np # Example dataset data = np.array([[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]) # Apply K-Means kmeans = KMeans(n_clusters=2, random_state=42) kmeans.fit(data) # Results print("Cluster centers:", kmeans.cluster_centers_) print("Labels:", kmeans.labels_) </syntaxhighlight> ==Parameters of K-Means== *'''Number of Clusters (k):''' The number of clusters to create. This parameter must be chosen carefully, as it significantly impacts the algorithm's performance. *'''Centroid Initialization:''' The initial positions of the centroids can affect convergence and results. K-Means++ is a commonly used initialization method to improve performance. *'''Distance Metric:''' The measure used to compute the distance between points and centroids, typically Euclidean distance. ==Advantages== *Simple and easy to implement. *Scales well to large datasets. *Works efficiently when clusters are well-separated. ==Limitations== *Sensitive to the initial placement of centroids, which may lead to suboptimal results. *Assumes spherical clusters and equal cluster sizes, which may not always reflect the data distribution. *Requires the number of clusters (k) to be specified beforehand. ==Applications== K-Means is used across various domains for clustering and grouping tasks: *'''Image Segmentation:''' Partitioning an image into meaningful segments or regions. *'''Customer Segmentation:''' Grouping customers based on purchasing behavior or demographics. *'''Anomaly Detection:''' Identifying unusual patterns or outliers in datasets. *'''Document Clustering:''' Grouping documents based on similarity in text content. ==Variants of K-Means== Several variations of the K-Means algorithm have been developed to address its limitations: *'''K-Means++:''' Improves the initialization process to reduce convergence time and improve results. *'''Mini-Batch K-Means:''' Processes subsets of data to handle large-scale datasets efficiently. *'''Fuzzy C-Means:''' Allows data points to belong to multiple clusters with varying degrees of membership. *'''Bisecting K-Means:''' Iteratively splits clusters for hierarchical clustering. ==Choosing the Number of Clusters== Selecting the appropriate value of '''k''' is crucial. Common methods include: *'''Elbow Method:''' Plot the within-cluster sum of squares (WCSS) against '''k'''. The optimal '''k''' is at the "elbow point," where the rate of decrease slows significantly. *'''Silhouette Analysis:''' Measures how similar data points are within a cluster compared to other clusters. *'''Gap Statistic:''' Compares the total within-cluster variation for different values of '''k''' with that expected under null reference data. ==Related Concepts and See Also== *[[Clustering]] *[[K-Means++]] *[[Silhouette Analysis]] *[[Hierarchical Clustering]] *[[Fuzzy C-Means]] *[[Unsupervised Learning]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록