익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Lift Curve
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
A '''Lift Curve''' is a graphical representation used in predictive modeling to measure the effectiveness of a model in identifying positive outcomes, compared to a baseline of random selection. It shows how much more likely the model is to capture positive cases within selected segments compared to a random approach. ==What is a Lift Curve?== A Lift Curve plots the lift (y-axis) against the cumulative percentage of the dataset selected (x-axis). It illustrates how well the model improves over random chance in identifying positive outcomes across different segments of the ranked data. *'''Higher Lift''': Indicates that the model is more effective in concentrating positive instances within the selected segment. *'''Approaching Lift = 1''': As more of the population is selected, the model’s performance approaches random selection (lift = 1), which typically occurs when the entire population is included. ==How to Interpret a Lift Curve== The Lift Curve provides insights into a model's performance across the ranked dataset: *The initial segments with high lift indicate that the model successfully identifies a high proportion of positive outcomes in the top ranks. *As more of the population is selected, the lift typically decreases, reflecting that the model’s ability to prioritize positive cases diminishes with a larger selection. ==Applications of Lift Curves== Lift Curves are widely used in fields that benefit from identifying high-value targets early: *'''Marketing Campaigns''': Helps in prioritizing customers most likely to respond, improving return on investment by focusing resources on high-lift segments. *'''Risk Assessment''': Assists in identifying high-risk instances within a small portion of the population, useful for fraud detection and credit risk management. *'''Customer Retention''': Highlights segments with the highest likelihood of churn, allowing for targeted retention efforts. ==Benefits of Using Lift Curves== Lift Curves provide several advantages in model evaluation: *'''Early Performance Insight''': Quickly show if a model is effective in capturing positives in top segments. *'''Resource Optimization''': Aid in decisions about how much of the population to target based on the lift provided by each segment. ==Limitations of Lift Curves== While useful, Lift Curves have certain limitations: *'''Dependence on Dataset Distribution''': Lift values can vary based on the overall distribution of positives in the dataset, making comparisons across datasets challenging. *'''Decreasing Utility with More Data Selected''': As the selected population increases, the lift approaches 1, offering limited insights into model performance at larger thresholds. ==Related Metrics and Tools== Lift Curves are often used in conjunction with other metrics and visualizations: *'''Gain Chart''': Provides a cumulative view of positive outcomes captured at different selection levels. *'''Cumulative Response Curve''': Focuses on the cumulative proportion of positives captured by the model. *'''Precision-Recall Curve''': Useful for evaluating models on imbalanced datasets, where false positives and true positives are considered. ==See Also== *[[Gain Chart]] *[[Cumulative Response Curve]] *[[Precision-Recall Curve]] *[[ROC Curve]] *[[Predictive Modeling]] [[Category:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록