익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Logistic Regression
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Logistic regression''' is a statistical and machine learning algorithm used for binary classification tasks, where the output variable is categorical and typically represents two classes (e.g., yes/no, spam/not spam, fraud/not fraud). Despite its name, Logistic Regression is a classification algorithm, not a regression algorithm, as it predicts probabilities of classes rather than continuous values. ==How It Works== Logistic Regression models the probability of a binary outcome using a logistic function, also known as the sigmoid function. The sigmoid function compresses values to range between 0 and 1, representing the probability of belonging to a particular class. The model predicts the probability that the input belongs to the positive class (1) and classifies it by applying a threshold, often 0.5. The logistic function is represented by: P(y=1 | X) = 1 / (1 + e<sup>-(b0 + b1X1 + b2X2 + ... + bnXn)</sup>) where: *'''P(y=1 | X)''' is the probability of the output being 1 given the input features. *'''X1, X2, ..., Xn''' are the input features. *'''b0''' is the intercept, and '''b1, b2, ..., bn''' are the coefficients of the features. ==Types of Logistic Regression== *'''Binary Logistic Regression''': Used for binary classification with two possible outcomes (e.g., yes/no). *'''Multinomial Logistic Regression''': Used when the outcome variable has more than two categories without any ordering (e.g., classifying types of animals). *'''Ordinal Logistic Regression''': Used when the outcome variable has ordered categories (e.g., ranking levels from low to high). ==Applications of Logistic Regression== Logistic Regression is widely used across industries due to its simplicity, interpretability, and effectiveness in binary classification tasks: *'''Healthcare''': Predicting disease outcomes, risk assessments, and patient survival chances. *'''Finance''': Credit scoring, fraud detection, and risk analysis. *'''Marketing''': Customer churn prediction, targeting potential buyers, and lead qualification. *'''Social Sciences''': Survey analysis, where responses fall into categories like agree/disagree or support/oppose. ==Key Metrics for Evaluating Logistic Regression== To assess the performance of a Logistic Regression model, common metrics include: *'''[[Accuracy]]''': The proportion of correct predictions. *'''[[Precision]]''': The ratio of true positive predictions to all positive predictions. *'''[[Recall]]''': The ratio of true positive predictions to all actual positives. *'''[[F1 Score]]''': The harmonic mean of precision and recall, useful when dealing with imbalanced data. *'''[[AUC]]-[[ROC Curve]]''': Measures the model’s ability to distinguish between classes, where a higher Area Under the Curve (AUC) indicates better performance. ==Assumptions of Logistic Regression== Logistic Regression relies on several assumptions for accurate results: 1. '''Linearity of Independent Variables and Log-Odds''': Assumes a linear relationship between the log-odds of the outcome and the independent variables. 2. '''Independence of Observations''': Observations should be independent of each other to avoid biased results. 3. '''No Multicollinearity''': Independent variables should not be highly correlated with each other, which can be checked using Variance Inflation Factor (VIF). 4. '''Sufficient Sample Size''': Logistic Regression requires a large enough sample size, especially for categorical variables, to make accurate predictions. ==Handling Limitations== Logistic Regression may not perform well if the relationship between variables is highly non-linear. In such cases, transformations, polynomial features, or using a more complex model like Decision Trees or Neural Networks can be considered. ==See Also== *[[Linear Regression]] *[[Support Vector Machine]] *[[K-Nearest Neighbor]] *[[Decision Tree]] *[[Naive Bayes]] [[Category:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록