익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Min-Max Scaling
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Min-Max Scaling''' is a data normalization technique used to scale features to a fixed range, typically [0, 1]. It ensures that all features contribute equally to the analysis or model by transforming the original values proportionally to fit within the specified range. Min-Max Scaling is widely used in data preprocessing for machine learning and statistical analysis. ==Overview== Min-Max Scaling transforms the data linearly by rescaling each value based on the feature's minimum and maximum values. This technique is particularly useful when the data needs to be bounded within a specific range, such as [0, 1] or [-1, 1]. Key characteristics: *Ensures all values are within the specified range. *Preserves the relationships between original values. *Sensitive to outliers, as extreme values can distort the scaling. ==Formula== The formula for Min-Max Scaling is: <blockquote>X' = (X - X_min) / (X_max - X_min)</blockquote> Where: *X: The original value. *X_min: The minimum value of the feature. * X_max: The maximum value of the feature. *X': The scaled value within the range [0, 1]. ==Example == Consider a dataset with the following values: {| class="wikitable" !Original Value!!Min-Max Scaled Value (Range: 0 to 1) |- |10 || 0.0 |- |15||0.5 |- |20||1.0 |} ===Steps=== #Find the minimum (X_min) and maximum (X_max) values: #* X_min = 10 #*X_max = 20 #Apply the formula: #*For X = 10: X' = (10 - 10) / (20 - 10) = 0.0 #*For X = 15: X' = (15 - 10) / (20 - 10) = 0.5 #*For X = 20: X' = (20 - 10) / (20 - 10) = 1.0 ==Relationship to Normalization == Min-Max Scaling is a specific method of normalization, as it rescales data to a defined range, typically [0, 1]. In the broader context of data preprocessing: *'''Normalization:''' **Refers to the process of transforming data to a specific range or scale. It is a general term encompassing various techniques. * '''Min-Max Scaling:''' **A specific technique within normalization that linearly rescales data based on the minimum and maximum values of the feature. In essence: *Normalization is the overarching concept. *Min-Max Scaling is one of the approaches used to achieve normalization. Other normalization techniques, such as Z-Score Normalization and Decimal Scaling, may be preferred in scenarios where handling outliers or achieving a standard distribution is necessary. However, Min-Max Scaling is particularly effective for bounded transformations like [0, 1]. ==Applications== Min-Max Scaling is commonly used in: *'''Machine Learning:''' **Preprocessing features for models sensitive to feature scale, such as neural networks and gradient descent-based algorithms. *'''Image Processing:''' **Normalizing pixel intensities to the range [0, 1]. *'''Finance:''' **Scaling stock prices or other financial metrics for analysis and comparison. *'''Data Visualization:''' **Ensuring uniform scale across variables for clear and consistent visualization. ==Advantages== *Ensures all features contribute equally to the model. *Simple and computationally efficient. *Suitable for features with known bounds. ==Limitations== *Sensitive to outliers, as extreme values can skew the scaling. *Requires knowledge of the minimum and maximum values for consistent scaling. *Does not standardize the data (e.g., mean ≠ 0, standard deviation ≠ 1). ==Python Code Example== <syntaxhighlight lang="python"> import numpy as np from sklearn.preprocessing import MinMaxScaler # Example data data = np.array([[10], [15], [20]]) # Min-Max Scaling scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data) print("Original Data:", data.flatten()) print("Scaled Data:", scaled_data.flatten()) </syntaxhighlight> ==See Also== *[[Normalization]] *[[Feature Scaling]] *[[Standardization]] *[[Data Preprocessing]] *[[Machine Learning]] [[Category:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록