익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Model Evaluation
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Model Evaluation''' refers to the process of assessing the performance of a machine learning model on a given dataset. It is a critical step in machine learning workflows to ensure that the model generalizes well to unseen data and performs as expected for the target application. ==Objectives of Model Evaluation== The key objectives of model evaluation are: *'''Assess Performance:''' Measure how well the model predicts outcomes. *'''Compare Models:''' Evaluate multiple models to select the best-performing one. *'''Detect Overfitting/Underfitting:''' Ensure the model generalizes well without fitting too closely to the training data. *'''Optimize Parameters:''' Identify areas for model improvement. ==Types of Evaluation Metrics== Model evaluation metrics vary depending on the type of machine learning problem: ===Classification Metrics=== *'''Accuracy:''' Proportion of correct predictions out of total predictions. *'''Precision:''' Proportion of true positives among predicted positives. *'''Recall (Sensitivity):''' Proportion of true positives among actual positives. *'''F1 Score:''' Harmonic mean of precision and recall. *'''ROC-AUC:''' Measures the area under the Receiver Operating Characteristic curve, balancing true positive and false positive rates. ===Regression Metrics=== *'''Mean Absolute Error (MAE):''' Average of absolute differences between actual and predicted values. *'''Mean Squared Error (MSE):''' Average of squared differences between actual and predicted values. *'''Root Mean Squared Error (RMSE):''' Square root of MSE, providing error in the same units as the output. *'''R² (Coefficient of Determination):''' Proportion of variance explained by the model. ===Clustering Metrics=== *'''Silhouette Score:''' Measures how well clusters are separated and cohesive. *'''Adjusted Rand Index (ARI):''' Compares clustering results with ground truth. *'''Calinski-Harabasz Index:''' Evaluates cluster density and separation. ==Model Evaluation Techniques== Several techniques are used to evaluate models effectively: ===Holdout Method=== *Split the dataset into training, validation, and testing sets. *Train the model on the training set, tune hyperparameters on the validation set, and evaluate performance on the testing set. ===Cross-Validation=== *Partition the dataset into \( k \) folds and perform \( k \)-fold cross-validation. *Each fold serves as a testing set once, and the remaining \( k-1 \) folds are used for training. ===Bootstrapping=== *Randomly resample the dataset with replacement and evaluate the model on each resampled set. ===Leave-One-Out Cross-Validation (LOOCV)=== *Use all but one data point for training and test on the single data point. Repeat for every data point. ==Example: Evaluating a Classification Model in Python== Using scikit-learn to evaluate a classification model:<syntaxhighlight lang="python"> from sklearn.model_selection import train_test_split, cross_val_score from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # Example dataset X = [[1, 2], [2, 3], [3, 4], [4, 5]] y = [0, 0, 1, 1] # Split data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42) # Train model model = RandomForestClassifier(random_state=42) model.fit(X_train, y_train) # Predictions y_pred = model.predict(X_test) # Evaluate print("Accuracy:", accuracy_score(y_test, y_pred)) print("Precision:", precision_score(y_test, y_pred)) print("Recall:", recall_score(y_test, y_pred)) print("F1 Score:", f1_score(y_test, y_pred)) </syntaxhighlight> ==Applications of Model Evaluation== *'''Healthcare:''' Assessing the performance of diagnostic models. *'''Finance:''' Evaluating risk prediction models for credit scoring. *'''Marketing:''' Measuring the effectiveness of customer segmentation models. *'''Natural Language Processing (NLP):''' Testing sentiment analysis or text classification models. ==Advantages== *'''Ensures Reliability:''' Provides confidence that the model will perform well on unseen data. *'''Identifies Weaknesses:''' Highlights areas where the model struggles, enabling targeted improvements. *'''Supports Model Selection:''' Helps choose the best model for a specific problem. ==Limitations== *'''Computational Cost:''' Some evaluation techniques, like cross-validation, can be time-consuming. *'''Data Dependency:''' Results may vary depending on the dataset split or sampling method. *'''Over-reliance on Metrics:''' Metrics may not fully capture real-world performance. ==Related Concepts and See Also== *[[Cross-Validation]] *[[Hyperparameter Tuning]] *[[Overfitting]] *[[Underfitting]] *[[Confusion Matrix]] *[[Bias and Variance]] *[[Clustering Metrics]] [[분류:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록