익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Observational Machine Learning Method
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Observational Machine Learning Methods''' are techniques designed to analyze data collected from observational studies rather than controlled experiments. In such studies, the assignment of treatments or interventions is not randomized, which can introduce biases and confounding factors. Observational ML methods aim to identify patterns, relationships, and causal effects within these datasets. ==Key Challenges in Observational Data== Observational data often comes with inherent challenges that make analysis complex: *'''Confounding Variables:''' Variables that influence both the treatment and the outcome, leading to biased estimates. *'''Selection Bias:''' Systematic differences between groups being compared, resulting from non-randomized assignments. *'''Unmeasured Variables:''' Variables not captured in the dataset that may affect the analysis. *'''Missing Data:''' Gaps in data collection that can distort results. ==Observational ML Techniques== Several techniques are used to address the challenges of observational data: ===Causal Inference Methods=== *'''Propensity Score Matching (PSM):''' Balances observed covariates between treated and untreated groups by matching units with similar propensity scores. *'''Inverse Probability Weighting (IPW):''' Weighs observations based on the inverse of their propensity scores to create a pseudo-randomized dataset. *'''Difference-in-Differences (DiD):''' Compares changes in outcomes over time between treatment and control groups. *'''Instrumental Variables (IV):''' Identifies causal effects using variables that influence the treatment but not the outcome directly. ===Machine Learning-Based Methods=== *'''Causal Forests:''' Extends decision trees to estimate heterogeneous treatment effects across subpopulations. *'''Bayesian Networks:''' Represents probabilistic relationships among variables and helps model causal dependencies. *'''Structural Equation Modeling (SEM):''' Combines causal graphs and statistical modeling to estimate relationships. *'''Doubly Robust Estimation:''' Combines propensity scores and outcome modeling to improve causal effect estimates. ===Data Preprocessing Techniques=== *'''Imputation:''' Fills missing data to ensure completeness and reduce bias. *'''Feature Selection:''' Identifies relevant variables to minimize confounding effects. *'''Normalization and Scaling:''' Ensures that variables are on comparable scales for analysis. ==Applications of Observational ML Methods== Observational ML methods are applied across various domains: *'''Healthcare:''' Estimating the effectiveness of treatments using patient data. *'''Economics:''' Evaluating policy impacts using non-experimental data. *'''Marketing:''' Measuring the effectiveness of campaigns or promotions. *'''Social Sciences:''' Analyzing societal trends and interventions. ==Example: Propensity Score Matching in Python== <syntaxhighlight lang="python"> from sklearn.linear_model import LogisticRegression import pandas as pd import numpy as np # Example dataset data = pd.DataFrame({ 'age': [25, 30, 45, 50, 35], 'income': [30000, 40000, 50000, 60000, 45000], 'treatment': [1, 0, 1, 0, 1], 'outcome': [1, 0, 1, 0, 1] }) # Estimate propensity scores model = LogisticRegression() model.fit(data[['age', 'income']], data['treatment']) data['propensity_score'] = model.predict_proba(data[['age', 'income']])[:, 1] # Identify treated and untreated units treated = data[data['treatment'] == 1] untreated = data[data['treatment'] == 0] print(data[['age', 'income', 'propensity_score']]) </syntaxhighlight> ==Advantages== *'''Flexibility:''' Allows analysis of real-world data without the need for controlled experiments. *'''Scalability:''' Can handle large datasets with diverse variables. *'''Insights from Real Data:''' Reflects real-world complexities and behaviors. ==Limitations== *'''Causal Ambiguity:''' Difficulty in distinguishing correlation from causation. *'''Bias and Confounding:''' Results can be influenced by unmeasured variables and selection bias. *'''Computational Complexity:''' Advanced methods may require significant computational resources. ==Related Concepts and See Also== *[[Causal Inference]] *[[Propensity Score Matching]] *[[Structural Equation Modeling]] *[[Bayesian Networks]] *[[Selection Bias]] *[[Data Imputation]] *[[Machine Learning]] [[분류:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록