익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Open Neural Network Exchange
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''ONNX (Open Neural Network Exchange)''' is an open-source format for representing machine learning models. It enables interoperability between different machine learning frameworks and tools, allowing developers to train models in one framework and deploy them in another. ONNX supports a wide range of machine learning and deep learning models. == Key Features of ONNX == * '''Interoperability:''' Facilitates seamless model transfer between frameworks like PyTorch, TensorFlow, and MXNet. * '''Extensibility:''' Supports custom operators and extensions for specialized use cases. * '''Efficiency:''' Optimized for performance on a variety of hardware platforms, including CPUs, GPUs, and NPUs. * '''Standardization:''' Provides a unified format to reduce the complexity of integrating multiple frameworks. == Components of ONNX == * '''Model File:''' Contains the computational graph, weights, and metadata of the model in a standardized format. * '''Operators:''' Predefined building blocks (e.g., ReLU, Conv2D, BatchNorm) used to define the computational graph. * '''Backends:''' Tools and runtimes that execute ONNX models on specific hardware (e.g., ONNX Runtime, TensorRT). == Benefits of ONNX == * '''Framework Agnosticism:''' Enables models to move across frameworks without rewriting code. * '''Cross-Platform Deployment:''' Simplifies model deployment on diverse hardware environments. * '''Optimized Execution:''' Leverages hardware acceleration for faster inference. * '''Broad Ecosystem Support:''' Supported by major AI frameworks and hardware vendors. == Supported Frameworks == ONNX is supported by a wide range of frameworks for training and deployment: * '''Training Frameworks:''' ** PyTorch ** TensorFlow ** Keras * '''Deployment Backends:''' ** ONNX Runtime ** TensorRT ** OpenVINO ** CoreML == Workflow Using ONNX == A typical ONNX workflow involves the following steps: # '''Export the Model:''' Convert a trained model from a supported framework to ONNX format. # '''Optimize the Model:''' Use ONNX tools or libraries to optimize the model for deployment. # '''Deploy the Model:''' Execute the ONNX model on a compatible backend. === Example: Exporting a PyTorch Model to ONNX === <syntaxhighlight lang="python"> import torch import torch.onnx # Example PyTorch model class SimpleModel(torch.nn.Module): def __init__(self): super(SimpleModel, self).__init__() self.fc = torch.nn.Linear(10, 1) def forward(self, x): return self.fc(x) model = SimpleModel() # Dummy input dummy_input = torch.randn(1, 10) # Export to ONNX torch.onnx.export(model, dummy_input, "simple_model.onnx", input_names=['input'], output_names=['output']) print("Model exported to ONNX format.") </syntaxhighlight> == Use Cases == * '''Model Interoperability:''' Transfer models between PyTorch and TensorFlow for training and inference. * '''Edge AI:''' Deploy ONNX models on edge devices with optimized runtimes like OpenVINO. * '''Cloud Inference:''' Use ONNX Runtime in cloud environments for scalable inference. * '''Cross-Platform Development:''' Develop once and deploy on multiple platforms without framework lock-in. == Advantages == * '''Standardized Format:''' Ensures compatibility and consistency across tools and frameworks. * '''Open Ecosystem:''' Encourages community contributions and industry adoption. * '''Performance Optimization:''' Supports hardware-specific optimizations for efficient execution. == Limitations == * '''Operator Coverage:''' Limited support for some custom or framework-specific operators. * '''Conversion Overhead:''' Requires additional steps to convert and validate models in ONNX format. * '''Debugging Complexity:''' Debugging ONNX model issues can be more challenging than native framework models. == Related Concepts and See Also == * [[PyTorch]] * [[TensorFlow]] * [[ONNX Runtime]] * [[TensorRT]] * [[Edge AI]] * [[Machine Learning Model Deployment]] * [[Interoperability in AI]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록