익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Rows (Data Science)
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
In data science, a '''row''' represents a single record or observation in a dataset. Rows, often referred to as '''examples, instances, or data points''', contain values for each feature or attribute, capturing one complete set of information in a structured format. Each row is typically analyzed as an individual unit, providing insights that contribute to broader trends or predictions when aggregated with other rows. ==Terminology== Several terms are used interchangeably with "row" in data science: *'''Example''': Commonly used in machine learning to refer to an individual training or test case. *'''Instance''': Emphasizes the idea of one specific case within a dataset, often used in contexts like classification or clustering. *'''Data Point''': A generic term indicating a single observation, frequently used in statistical analysis or visualizations. ==Structure of a Row== Each row consists of values corresponding to different columns (features or variables). For example, in a customer dataset, each row might include values for attributes like age, gender, purchase history, and location, representing one unique customer. ==Importance of Rows in Data Analysis== Rows, or data points, are the foundation of data analysis: *'''Individual Insights''': Each row represents an individual case that can reveal unique patterns or anomalies, useful for identifying outliers or specific trends. *'''Training and Testing''': In supervised learning, each row serves as an instance with both features (input variables) and a label (output variable), enabling the model to learn patterns or make predictions. *'''Aggregation and Grouping''': Rows can be grouped and aggregated to uncover statistical patterns across different segments or groups in the data. ==Example== Consider a dataset of loan applications. Each row (or instance) represents a single application, with columns for attributes such as applicant income, loan amount, credit score, and approval status. In this context: *Each row corresponds to one applicant's data. *Each row can be analyzed to predict whether similar future applicants will be approved or declined. ==Common Challenges with Rows== Working with rows presents some challenges, particularly in large datasets: *'''Data Quality''': Incomplete or inconsistent rows can affect the accuracy of analysis and model training. *'''Handling Outliers''': Certain rows may contain outlier values that distort overall patterns and require special handling. *'''Row Duplication''': Duplicate rows can skew results and often need to be removed for accurate analysis. ==Related Concepts== Understanding rows in the context of data analysis often involves knowledge of related concepts: *'''Columns (Features)''': Columns represent individual attributes or variables, with each row containing a value for each column. *'''Observations vs. Attributes''': Rows are observations (instances), while columns represent attributes or characteristics of these observations. *'''Sample vs. Population''': Rows often represent a sample used to infer patterns or trends about a larger population. ==See Also== *[[Feature (Data Science)]] *[[Instance]] *[[Data Point]] *[[Outliers]] *[[Data Preprocessing]] [[Category:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록