익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
SHAP Analysis
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''SHAP Analysis''' (SHapley Additive exPlanations) is a machine learning interpretability technique based on cooperative game theory. It is used to explain the predictions of complex machine learning models by attributing the contribution of each feature to the model's output. SHAP values provide a consistent and mathematically sound way to interpret individual predictions and global feature importance. ==Overview== SHAP values are derived from Shapley values, a concept in cooperative game theory. The key idea is to fairly distribute the "payout" (model prediction) among features based on their contribution. SHAP analysis is particularly valuable for understanding how input features influence a specific prediction or the overall model behavior. Key features: *'''Feature Attribution:''' Quantifies the impact of each feature on a prediction. *'''Consistency:''' Ensures that feature importance values remain consistent with the model. *'''Global and Local Interpretability:''' Can explain both overall feature importance and individual predictions. ==How SHAP Works== #The model's prediction is treated as the "payout" in a cooperative game. #SHAP values calculate the marginal contribution of each feature by considering all possible combinations of features. #The contributions are averaged across all permutations to ensure a fair distribution. ==Applications== SHAP analysis is widely used in various fields: *'''Finance:''' **Explaining credit scoring models by identifying key factors influencing an applicant's score. *'''Healthcare:''' **Understanding predictions in medical diagnosis systems, such as identifying factors contributing to disease risk. *'''Marketing:''' **Evaluating customer segmentation models to understand drivers of churn or purchasing behavior. *'''Machine Learning Development:''' **Debugging and refining models by identifying unexpected feature impacts. ==Types of SHAP Visualizations== SHAP provides several visualization tools to better understand the model's behavior: *'''Summary Plot:''' Displays feature importance across all data points. *'''Force Plot:''' Shows how features influence individual predictions. *'''Dependence Plot:''' Illustrates the relationship between a feature and its SHAP values. *'''Decision Plot:''' Tracks feature contributions across a decision-making process. ==Advantages== *Provides a mathematically sound framework for feature attribution. *Ensures consistent and fair explanations across models. *Supports both local (individual prediction) and global (model-wide) interpretability. ==Limitations== *Computationally expensive for models with a large number of features. *Assumes feature independence, which may not always hold in real-world data. *Can be challenging to interpret with highly correlated features. ==See Also== *[[Model Interpretability]] *[[Feature Importance]] *[[LIME (Local Interpretable Model-agnostic Explanations)]] *[[Machine Learning]] *[[Game Theory]] [[Category:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록