익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Stratified Sampling
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
고급
특수 문자
도움말
문단 제목
2단계
3단계
4단계
5단계
형식
넣기
라틴 문자
확장 라틴 문자
IPA 문자
기호
그리스 문자
그리스어 확장
키릴 문자
아랍 문자
아랍어 확장
히브리 문자
뱅골어
타밀어
텔루구어 문자
싱할라 문자
데바나가리어
구자라트 문자
태국어
라오어
크메르어
캐나다 원주민 언어
룬 문자
Á
á
À
à
Â
â
Ä
ä
Ã
ã
Ǎ
ǎ
Ā
ā
Ă
ă
Ą
ą
Å
å
Ć
ć
Ĉ
ĉ
Ç
ç
Č
č
Ċ
ċ
Đ
đ
Ď
ď
É
é
È
è
Ê
ê
Ë
ë
Ě
ě
Ē
ē
Ĕ
ĕ
Ė
ė
Ę
ę
Ĝ
ĝ
Ģ
ģ
Ğ
ğ
Ġ
ġ
Ĥ
ĥ
Ħ
ħ
Í
í
Ì
ì
Î
î
Ï
ï
Ĩ
ĩ
Ǐ
ǐ
Ī
ī
Ĭ
ĭ
İ
ı
Į
į
Ĵ
ĵ
Ķ
ķ
Ĺ
ĺ
Ļ
ļ
Ľ
ľ
Ł
ł
Ń
ń
Ñ
ñ
Ņ
ņ
Ň
ň
Ó
ó
Ò
ò
Ô
ô
Ö
ö
Õ
õ
Ǒ
ǒ
Ō
ō
Ŏ
ŏ
Ǫ
ǫ
Ő
ő
Ŕ
ŕ
Ŗ
ŗ
Ř
ř
Ś
ś
Ŝ
ŝ
Ş
ş
Š
š
Ș
ș
Ț
ț
Ť
ť
Ú
ú
Ù
ù
Û
û
Ü
ü
Ũ
ũ
Ů
ů
Ǔ
ǔ
Ū
ū
ǖ
ǘ
ǚ
ǜ
Ŭ
ŭ
Ų
ų
Ű
ű
Ŵ
ŵ
Ý
ý
Ŷ
ŷ
Ÿ
ÿ
Ȳ
ȳ
Ź
ź
Ž
ž
Ż
ż
Æ
æ
Ǣ
ǣ
Ø
ø
Œ
œ
ß
Ð
ð
Þ
þ
Ə
ə
서식 지정
링크
문단 제목
목록
파일
각주
토론
설명
입력하는 내용
문서에 나오는 결과
기울임꼴
''기울인 글씨''
기울인 글씨
굵게
'''굵은 글씨'''
굵은 글씨
굵고 기울인 글씨
'''''굵고 기울인 글씨'''''
굵고 기울인 글씨
Stratified Sampling is a sampling technique used to ensure that subsets of data (called “strata”) maintain the same distribution of key characteristics as the original dataset. In data science and machine learning, stratified sampling is often used to create training, validation, and test splits, particularly when dealing with imbalanced datasets. This method ensures that each subset is representative of the entire dataset, improving the model's ability to generalize across different classes. ==Importance of Stratified Sampling== Stratified sampling is crucial in scenarios where class distribution is imbalanced or certain features vary significantly: *'''Ensures Representativeness''': By preserving the original class proportions, stratified sampling creates subsets that reflect the diversity and distribution of the entire dataset. *'''Reduces Bias''': Helps prevent sampling bias, ensuring that the model does not disproportionately favor any particular class or feature during training or evaluation. *'''Improves Model Performance''': Ensures that each class is adequately represented in training, validation, and test sets, leading to better model generalization, particularly in imbalanced datasets. ==How Stratified Sampling Works== Stratified sampling divides the dataset into mutually exclusive groups (strata) based on one or more specific features, and samples are then drawn from each group proportionally. # '''Define Strata''': Identify one or more features for stratification (e.g., class labels in classification tasks). # '''Partition Data into Strata''': Divide the data based on the selected feature(s) so that each stratum contains data points with the same characteristic. # '''Sample Proportionally''': For each stratum, randomly sample a proportional subset that reflects the original distribution within the dataset. ==Applications of Stratified Sampling== Stratified sampling is commonly applied in various machine learning tasks to ensure balanced representation across splits: *'''Imbalanced Classification''': Used in scenarios where certain classes have much fewer samples, such as fraud detection or disease diagnosis, ensuring all classes are represented in training and test sets. *'''Cross-Validation''': In stratified k-fold cross-validation, each fold maintains the original class distribution, making it useful for evaluating models on imbalanced datasets. *'''Customer Segmentation''': Ensures that each customer segment is represented proportionally in training and test data, improving the model’s applicability across segments. ==Advantages of Stratified Sampling== Stratified sampling provides several benefits in data science and machine learning: *'''Prevents Skewed Sampling''': Ensures that important characteristics are preserved in each subset, reducing the risk of sampling error. *'''Enhances Generalization''': Models trained on stratified samples are better able to generalize across classes, especially for imbalanced datasets. *'''Efficiency in Evaluation''': Stratified test sets provide a more reliable measure of model performance on different classes, making evaluation metrics more representative. ==Challenges with Stratified Sampling== While beneficial, stratified sampling has some challenges: *'''Complexity in Multi-Class or Multi-Feature Stratification''': When dealing with multiple classes or strata, it may be challenging to ensure that each subset maintains the original distribution accurately. *'''Data Availability in Small Datasets''': In small datasets, certain strata may have very few samples, making it difficult to achieve proportional sampling without duplicating or losing data. *'''Feature Selection for Stratification''': Deciding which feature(s) to stratify on can be challenging, particularly in datasets with many relevant features. ==Related Concepts== Stratified sampling is closely related to several other sampling and data partitioning concepts in machine learning: *'''Random Sampling''': In contrast to stratified sampling, random sampling does not consider the distribution of features, potentially leading to unbalanced subsets. *'''Data Partitioning''': Stratified sampling is often used for partitioning data into training, validation, and test sets while preserving class distributions. *'''Cross-Validation''': Stratified sampling can be applied in k-fold cross-validation to ensure each fold maintains the original class distribution. *'''Imbalanced Data Handling''': Stratified sampling is one approach to addressing class imbalance in datasets, often used alongside other techniques like oversampling and undersampling. ==See Also== *[[Random Sampling]] *[[Data Partition]] *[[Cross-Validation]] *[[Imbalanced Data]] *[[Oversampling]] *[[Undersampling]] [[Category:Data Science]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록