익명 사용자
로그인하지 않음
토론
기여
계정 만들기
로그인
IT 위키
검색
Trend Following Strategy
편집하기
IT 위키
이름공간
문서
토론
더 보기
더 보기
문서 행위
읽기
편집
원본 편집
역사
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
'''Trend Following Strategy''' is a trading approach that seeks to capitalize on market trends by buying assets in an uptrend and selling (or shorting) assets in a downtrend. It is widely used in stocks, commodities, forex, and futures markets. ==Concept== Trend following strategies operate on the principle that markets tend to move in sustained trends rather than random fluctuations. Traders using this approach do not attempt to predict price movements but instead react to existing trends. ==Characteristics== *'''Price-Based Strategy''' – Relies on market price action rather than fundamental analysis. *'''Medium to Long-Term Approach''' – Trends can last from weeks to months or even years. *'''Rules-Based Trading''' – Uses predefined entry and exit criteria. *'''Risk Management Focus''' – Uses stop-loss orders and position sizing to manage risk. ==Common Trend Following Indicators== Trend followers use technical indicators to identify and confirm trends: *'''Moving Averages''' **Simple Moving Average (SMA) and Exponential Moving Average (EMA) to smooth price data. *'''Bollinger Bands''' **Measures volatility to identify potential trend continuations or reversals. *'''Average Directional Index (ADX)''' **Quantifies trend strength. *'''Breakout Trading''' **Trades based on price breaking above or below key levels. ==Example Strategy: Moving Average Crossover== One common trend-following method is the '''moving average crossover strategy''', which involves: #Using two moving averages – A short-term moving average (e.g., 50-day SMA) and a long-term moving average (e.g., 200-day SMA). #Buy signal – When the short-term moving average crosses above the long-term moving average (Golden Cross). #Sell signal – When the short-term moving average crosses below the long-term moving average (Death Cross). ===Example Implementation in Python=== <syntaxhighlight lang="python"> import pandas as pd import numpy as np import matplotlib.pyplot as plt # Sample Data: Load historical stock prices df = pd.read_csv("stock_prices.csv") df["50_SMA"] = df["Close"].rolling(window=50).mean() df["200_SMA"] = df["Close"].rolling(window=200).mean() # Identify buy and sell signals df["Signal"] = np.where(df["50_SMA"] > df["200_SMA"], 1, 0) plt.plot(df["Close"], label="Stock Price") plt.plot(df["50_SMA"], label="50-day SMA") plt.plot(df["200_SMA"], label="200-day SMA") plt.legend() plt.show() </syntaxhighlight> ==Advantages== *'''Captures Large Market Moves''' **Profits from long-term trends. *'''No Need to Predict Markets''' **Reacts to price movements rather than forecasts. *'''Works Across Multiple Asset Classes''' **Can be applied to stocks, commodities, forex, and cryptocurrencies. ==Limitations== *'''Whipsaw Risk''' **False signals in choppy or sideways markets. *'''Lagging Indicator''' **Trend following reacts to established trends rather than predicting reversals. *'''Drawdowns''' **Trend followers can experience prolonged losses during trendless periods. ==Applications== *'''Systematic Trading Funds''' **Used by hedge funds and CTAs (Commodity Trading Advisors). *'''Algorithmic Trading''' **Implemented in automated trading systems. *'''Portfolio Diversification''' **Reduces risk by capturing trends in multiple asset classes. ==See Also== *[[Momentum Trading]] *[[Moving Average]] *[[Technical Analysis]] *[[Algorithmic Trading]] *[[Risk Management]]
요약:
IT 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
IT 위키:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기
둘러보기
대문
최근 바뀜
광고
위키 도구
위키 도구
특수 문서 목록
문서 도구
문서 도구
사용자 문서 도구
더 보기
여기를 가리키는 문서
가리키는 글의 최근 바뀜
문서 정보
문서 기록