N-Fold Cross-Validation: Revision history

From IT위키

Diff selection: Mark the radio buttons of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.

    5 November 2024

    • curprev 07:0507:05, 5 November 2024핵톤 talk contribs 5,458 bytes +5,458 Created page with "N-Fold Cross-Validation is a technique used in machine learning to evaluate a model's performance by dividing the dataset into multiple subsets, or "folds." In this method, the dataset is split into N equal parts, where the model is trained on N-1 folds and tested on the remaining fold. This process is repeated N times, each time using a different fold as the test set, and the results are averaged to obtain an overall performance estimate. N-fold cross-validation helps t..." Tag: Visual edit