Overfitting: Revision history

From IT위키

Diff selection: Mark the radio buttons of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.

5 November 2024

  • curprev 02:2502:25, 5 November 2024핵톤 talk contribs 4,444 bytes +4,444 Created page with "'''Overfitting''' is a common issue in machine learning where a model learns the training data too closely, capturing noise and specific patterns that do not generalize well to new, unseen data. This results in high accuracy on the training set but poor performance on test data, as the model fails to generalize and instead memorizes irrelevant details. ==Causes of Overfitting== Several factors contribute to overfitting in machine learning models: *'''Complex Models''': M..." Tag: Visual edit