SHAP Analysis: 편집 역사

IT 위키

차이 선택: 비교하려는 판의 라디오 버튼을 선택한 다음 엔터나 아래의 버튼을 누르세요.
설명: (최신) = 최신 판과 비교, (이전) = 이전 판과 비교, 잔글= 사소한 편집

    2024년 11월 30일 (토)

    • 최신이전 07:382024년 11월 30일 (토) 07:38Fortify 토론 기여 2,985 바이트 +2,985 Created page with "'''SHAP Analysis''' (SHapley Additive exPlanations) is a machine learning interpretability technique based on cooperative game theory. It is used to explain the predictions of complex machine learning models by attributing the contribution of each feature to the model's output. SHAP values provide a consistent and mathematically sound way to interpret individual predictions and global feature importance. ==Overview== SHAP values are derived from Shapley values, a concept..." 태그: 시각 편집