Underfitting: 편집 역사

IT 위키

차이 선택: 비교하려는 판의 라디오 버튼을 선택한 다음 엔터나 아래의 버튼을 누르세요.
설명: (최신) = 최신 판과 비교, (이전) = 이전 판과 비교, 잔글= 사소한 편집

    2024년 11월 5일 (화)

    • 최신이전 02:262024년 11월 5일 (화) 02:26핵톤 토론 기여 4,364 바이트 +4,364 Created page with "Underfitting is a common issue in machine learning where a model is too simple to capture the underlying patterns in the data. As a result, the model performs poorly on both training and test datasets, failing to achieve high accuracy. Underfitting occurs when the model lacks the capacity or complexity needed to represent the relationships within the data. ==Causes of Underfitting== Several factors contribute to underfitting in machine learning models: *'''Over-Simplifie..." 태그: 시각 편집