퓨샷 러닝
From IT Wiki
- Few-shot Learning
대량의 학습 데이터가 없는 상태에서 소량의 데이터만으로 효과적으로 학습하는데 주안점을 둔 학습 방식
기존 학습 방법의 문제점
- 방대한 데이터 필요
- 방대한 데이터의 라벨링 작업 필요[1]
- 학습을 위한 대량의 컴퓨팅 리소스 필요
학습 방법
데이터셋 구성
- 서포트 데이터(support data): 훈련에 사용
- 쿼리 데이터(query data): 테스트에 사용
러닝 태스크
- N-way K-shot 문제
- N은 범주의 수
- K는 범주별 서포트 데이터의 수
- K가 많을수록 이 범주에 해당하는 데이터를 예측하는 모델의 성능(추론 정확도) 항샹
- 퓨샷 러닝은 이 K가 매우 작은 상황에서의 모델 학습
- 퓨샷 러닝 모델의 성능은 N과 반비례하며 K와는 비례하는 관계
학습 방식
- 거리 학습 기반 방식
- Siamese Neural network for one-shot image recognition
- Matching networks for one-shot learning
- Prototypical networks for few-shot learning
- Learning to compare : relation network for few-shot learning
- 그래프 신경망 방식
- Few-shot learning with graph neural networks
- Transductive propagation network for few-shot learning (TPN)
같이 보기
참고 문헌
- 퓨샷 러닝(few-shot learning)과 메타 러닝(meta-learning)
- 퓨샷 러닝(few-shot learning) 연구 동향을 소개합니다.
- 소량의 데이터로 학습하는 퓨샷러닝
- ↑ 지도학습의 경우 데이터가 있더라도 데이터 라벨링에 상당한 시간과 인력이 필요. 자체적으로 수행할 환경이 안 되는 경우 아마존의 메커니컬터크(Mechanical Turk)처럼 유료로 데이터에 주석을 달아주는 서비스를 이용