AutoML
IT 위키
Auto Machine Learning; 자동 기계학습; 자동 머신러닝
- AutoML은 기계학습상의 HITL을 개선하여 완전한 자동화를 추구하는 인공지능 분야 및 그 기술을 아우르는 용어이다.
AutoML의 의의[편집 | 원본 편집]
관련 도구 및 라이브러리[편집 | 원본 편집]
예시[편집 | 원본 편집]
autogluon을 이용하여 가작 적합한 모델을 찾는 과정
AutoGluon will gauge predictive performance using evaluation metric: 'accuracy'
To change this, specify the eval_metric parameter of Predictor()
Automatically generating train/validation split with holdout_frac=0.2, Train Rows: 400, Val Rows: 100
Fitting 13 L1 models ...
Fitting model: KNeighborsUnif ...
0.73 = Validation score (accuracy)
0.0s = Training runtime
0.01s = Validation runtime
Fitting model: KNeighborsDist ...
0.65 = Validation score (accuracy)
0.0s = Training runtime
0.0s = Validation runtime
Fitting model: LightGBMXT ...
0.83 = Validation score (accuracy)
1.01s = Training runtime
0.01s = Validation runtime
Fitting model: LightGBM ...
0.85 = Validation score (accuracy)
0.23s = Training runtime
0.01s = Validation runtime
Fitting model: RandomForestGini ...
0.84 = Validation score (accuracy)
0.58s = Training runtime
0.06s = Validation runtime
Fitting model: RandomForestEntr ...
0.83 = Validation score (accuracy)
0.47s = Training runtime
0.06s = Validation runtime
Fitting model: CatBoost ...
0.85 = Validation score (accuracy)
1.13s = Training runtime
0.01s = Validation runtime
Fitting model: ExtraTreesGini ...
0.82 = Validation score (accuracy)
0.47s = Training runtime
0.06s = Validation runtime
Fitting model: ExtraTreesEntr ...
0.81 = Validation score (accuracy)
0.47s = Training runtime
0.06s = Validation runtime
Fitting model: NeuralNetFastAI ...
0.82 = Validation score (accuracy)
3.2s = Training runtime
0.02s = Validation runtime
Fitting model: XGBoost ...
0.87 = Validation score (accuracy)
0.23s = Training runtime
0.01s = Validation runtime
Fitting model: NeuralNetTorch ...
0.85 = Validation score (accuracy)
2.08s = Training runtime
0.01s = Validation runtime
Fitting model: LightGBMLarge ...
0.83 = Validation score (accuracy)
0.35s = Training runtime
0.01s = Validation runtime
Fitting model: WeightedEnsemble_L2 ...
0.87 = Validation score (accuracy)
0.38s = Training runtime
0.0s = Validation runtime
AutoGluon training complete, total runtime = 11.19s ... Best model: "WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20221125_121604/")