인공무능(토론 | 기여)님의 2025년 9월 25일 (목) 09:54 판 (새 문서: 배치 정규화(영어: Batch Normalization, 줄여서 BN)는 딥 러닝에서 학습을 안정화하고 속도를 향상시키기 위해 사용되는 정규화 기법이다. 각 층의 입력을 정규화하여 내부 공변량 변화(Internal Covariate Shift)를 줄이는 것을 목적으로 한다. ==개요== *딥러닝 모델은 층이 깊어질수록 학습이 불안정해지고, 기울기 소실/폭주 문제로 인해 학습 속도가 느려진다. *배치 정규화는...)