경사 하강법: 편집 역사

IT 위키

차이 선택: 비교하려는 판의 라디오 버튼을 선택한 다음 엔터나 아래의 버튼을 누르세요.
설명: (최신) = 최신 판과 비교, (이전) = 이전 판과 비교, 잔글= 사소한 편집

    2025년 9월 11일 (목)

    • 최신이전 03:032025년 9월 11일 (목) 03:03인공무능 토론 기여 2,438 바이트 +2,438 새 문서: '''경사 하강법(Gradient Descent)'''은 머신러닝 및 딥러닝에서 손실 함수의 값을 최소화하기 위해 매개변수를 반복적으로 갱신하는 최적화 기법이다. ==개요== 경사 하강법은 손실 함수의 기울기, 즉 그래디언트(gradient)를 계산하여, 그 반대 방향으로 파라미터를 이동시킴으로써 손실 값을 점차 줄여 나가는 방식이다. 함수의 기울기가 0에 가까워질수록 최솟값에 수렴하... 태그: 시각 편집