지식 증류: 편집 역사

IT 위키

차이 선택: 비교하려는 판의 라디오 버튼을 선택한 다음 엔터나 아래의 버튼을 누르세요.
설명: (최신) = 최신 판과 비교, (이전) = 이전 판과 비교, 잔글= 사소한 편집

2025년 10월 30일 (목)

  • 최신이전 05:232025년 10월 30일 (목) 05:23인공무능 토론 기여 5,397 바이트 +5,397 새 문서: '''지식 증류'''(Knowledge Distillation, KD)는 대형 신경망(Teacher Model)이 학습한 지식을 작은 신경망(Student Model)에 전이(distill)하여 효율적 성능을 달성하는 모델 압축 기법이다.<ref>Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv:1503.02531 (2015).</ref> 대형 모델이 가진 복잡한 표현과 분류 경계 정보를 소형 모델이 간접적으로 학습하게 함으로써,... 태그: 시각 편집