AutoML: 두 판 사이의 차이
IT 위키
| 편집 요약 없음 | |||
| 1번째 줄: | 1번째 줄: | ||
| [[분류:인공지능]] | [[분류:인공지능]] | ||
| Auto Machine Learning; 자동 기계학습; 자동 머신러닝 | '''Auto Machine Learning; 자동 기계학습; 자동 머신러닝''' | ||
| ;기계학습상의 [[HITL]]을 개선하여 완전한 자동화를 추구하는 인공지능 분야 | ;AutoML은 기계학습상의 [[HITL]]을 개선하여 완전한 자동화를 추구하는 인공지능 분야 및 그 기술을 아우르는 용어이다. | ||
| == AutoML의 의의 == | |||
| * 현재 기계학습의 상당 부분은 인간의 수작업에 의존 | * 현재 기계학습의 상당 부분은 인간의 수작업에 의존 | ||
| ** [[데이터 전처리]], [[하이퍼 파라미터]] 최적화 등 | ** [[데이터 전처리]], [[하이퍼 파라미터]] 최적화 등 | ||
| * 이런 수작업을 줄이거나 자동화할 경우 기계학습 응용성 극대화 가능 | * 이런 수작업을 줄이거나 자동화할 경우 기계학습 응용성 극대화 가능 | ||
| == 관련 도구 및 라이브러리 == | |||
| * [[Autogluon]] | |||
| == 예시 == | |||
| autogluon을 이용하여 가작 적합한 모델을 찾는 과정<syntaxhighlight lang="abl"> | |||
| AutoGluon will gauge predictive performance using evaluation metric: 'accuracy' | |||
| 	To change this, specify the eval_metric parameter of Predictor() | |||
| Automatically generating train/validation split with holdout_frac=0.2, Train Rows: 400, Val Rows: 100 | |||
| Fitting 13 L1 models ... | |||
| Fitting model: KNeighborsUnif ... | |||
| 	0.73	 = Validation score   (accuracy) | |||
| 	0.0s	 = Training   runtime | |||
| 	0.01s	 = Validation runtime | |||
| Fitting model: KNeighborsDist ... | |||
| 	0.65	 = Validation score   (accuracy) | |||
| 	0.0s	 = Training   runtime | |||
| 	0.0s	 = Validation runtime | |||
| Fitting model: LightGBMXT ... | |||
| 	0.83	 = Validation score   (accuracy) | |||
| 	1.01s	 = Training   runtime | |||
| 	0.01s	 = Validation runtime | |||
| Fitting model: LightGBM ... | |||
| 	0.85	 = Validation score   (accuracy) | |||
| 	0.23s	 = Training   runtime | |||
| 	0.01s	 = Validation runtime | |||
| Fitting model: RandomForestGini ... | |||
| 	0.84	 = Validation score   (accuracy) | |||
| 	0.58s	 = Training   runtime | |||
| 	0.06s	 = Validation runtime | |||
| Fitting model: RandomForestEntr ... | |||
| 	0.83	 = Validation score   (accuracy) | |||
| 	0.47s	 = Training   runtime | |||
| 	0.06s	 = Validation runtime | |||
| Fitting model: CatBoost ... | |||
| 	0.85	 = Validation score   (accuracy) | |||
| 	1.13s	 = Training   runtime | |||
| 	0.01s	 = Validation runtime | |||
| Fitting model: ExtraTreesGini ... | |||
| 	0.82	 = Validation score   (accuracy) | |||
| 	0.47s	 = Training   runtime | |||
| 	0.06s	 = Validation runtime | |||
| Fitting model: ExtraTreesEntr ... | |||
| 	0.81	 = Validation score   (accuracy) | |||
| 	0.47s	 = Training   runtime | |||
| 	0.06s	 = Validation runtime | |||
| Fitting model: NeuralNetFastAI ... | |||
| 	0.82	 = Validation score   (accuracy) | |||
| 	3.2s	 = Training   runtime | |||
| 	0.02s	 = Validation runtime | |||
| Fitting model: XGBoost ... | |||
| 	0.87	 = Validation score   (accuracy) | |||
| 	0.23s	 = Training   runtime | |||
| 	0.01s	 = Validation runtime | |||
| Fitting model: NeuralNetTorch ... | |||
| 	0.85	 = Validation score   (accuracy) | |||
| 	2.08s	 = Training   runtime | |||
| 	0.01s	 = Validation runtime | |||
| Fitting model: LightGBMLarge ... | |||
| 	0.83	 = Validation score   (accuracy) | |||
| 	0.35s	 = Training   runtime | |||
| 	0.01s	 = Validation runtime | |||
| Fitting model: WeightedEnsemble_L2 ... | |||
| 	0.87	 = Validation score   (accuracy) | |||
| 	0.38s	 = Training   runtime | |||
| 	0.0s	 = Validation runtime | |||
| AutoGluon training complete, total runtime = 11.19s ... Best model: "WeightedEnsemble_L2" | |||
| TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20221125_121604/") | |||
| </syntaxhighlight> | |||
2022년 12월 2일 (금) 04:44 기준 최신판
Auto Machine Learning; 자동 기계학습; 자동 머신러닝
- AutoML은 기계학습상의 HITL을 개선하여 완전한 자동화를 추구하는 인공지능 분야 및 그 기술을 아우르는 용어이다.
AutoML의 의의[편집 | 원본 편집]
관련 도구 및 라이브러리[편집 | 원본 편집]
예시[편집 | 원본 편집]
autogluon을 이용하여 가작 적합한 모델을 찾는 과정
AutoGluon will gauge predictive performance using evaluation metric: 'accuracy'
	To change this, specify the eval_metric parameter of Predictor()
Automatically generating train/validation split with holdout_frac=0.2, Train Rows: 400, Val Rows: 100
Fitting 13 L1 models ...
Fitting model: KNeighborsUnif ...
	0.73	 = Validation score   (accuracy)
	0.0s	 = Training   runtime
	0.01s	 = Validation runtime
Fitting model: KNeighborsDist ...
	0.65	 = Validation score   (accuracy)
	0.0s	 = Training   runtime
	0.0s	 = Validation runtime
Fitting model: LightGBMXT ...
	0.83	 = Validation score   (accuracy)
	1.01s	 = Training   runtime
	0.01s	 = Validation runtime
Fitting model: LightGBM ...
	0.85	 = Validation score   (accuracy)
	0.23s	 = Training   runtime
	0.01s	 = Validation runtime
Fitting model: RandomForestGini ...
	0.84	 = Validation score   (accuracy)
	0.58s	 = Training   runtime
	0.06s	 = Validation runtime
Fitting model: RandomForestEntr ...
	0.83	 = Validation score   (accuracy)
	0.47s	 = Training   runtime
	0.06s	 = Validation runtime
Fitting model: CatBoost ...
	0.85	 = Validation score   (accuracy)
	1.13s	 = Training   runtime
	0.01s	 = Validation runtime
Fitting model: ExtraTreesGini ...
	0.82	 = Validation score   (accuracy)
	0.47s	 = Training   runtime
	0.06s	 = Validation runtime
Fitting model: ExtraTreesEntr ...
	0.81	 = Validation score   (accuracy)
	0.47s	 = Training   runtime
	0.06s	 = Validation runtime
Fitting model: NeuralNetFastAI ...
	0.82	 = Validation score   (accuracy)
	3.2s	 = Training   runtime
	0.02s	 = Validation runtime
Fitting model: XGBoost ...
	0.87	 = Validation score   (accuracy)
	0.23s	 = Training   runtime
	0.01s	 = Validation runtime
Fitting model: NeuralNetTorch ...
	0.85	 = Validation score   (accuracy)
	2.08s	 = Training   runtime
	0.01s	 = Validation runtime
Fitting model: LightGBMLarge ...
	0.83	 = Validation score   (accuracy)
	0.35s	 = Training   runtime
	0.01s	 = Validation runtime
Fitting model: WeightedEnsemble_L2 ...
	0.87	 = Validation score   (accuracy)
	0.38s	 = Training   runtime
	0.0s	 = Validation runtime
AutoGluon training complete, total runtime = 11.19s ... Best model: "WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20221125_121604/")

