AutoML: Difference between revisions
From IT Wiki
No edit summary |
|||
Line 1: | Line 1: | ||
[[분류:인공지능]] | [[분류:인공지능]] | ||
Auto Machine Learning; 자동 기계학습; 자동 머신러닝 | '''Auto Machine Learning; 자동 기계학습; 자동 머신러닝''' | ||
;기계학습상의 [[HITL]]을 개선하여 완전한 자동화를 추구하는 인공지능 분야 | ;AutoML은 기계학습상의 [[HITL]]을 개선하여 완전한 자동화를 추구하는 인공지능 분야 및 그 기술을 아우르는 용어이다. | ||
== AutoML의 의의 == | |||
* 현재 기계학습의 상당 부분은 인간의 수작업에 의존 | * 현재 기계학습의 상당 부분은 인간의 수작업에 의존 | ||
** [[데이터 전처리]], [[하이퍼 파라미터]] 최적화 등 | ** [[데이터 전처리]], [[하이퍼 파라미터]] 최적화 등 | ||
* 이런 수작업을 줄이거나 자동화할 경우 기계학습 응용성 극대화 가능 | * 이런 수작업을 줄이거나 자동화할 경우 기계학습 응용성 극대화 가능 | ||
== 관련 도구 및 라이브러리 == | |||
* [[Autogluon]] | |||
== 예시 == | |||
autogluon을 이용하여 가작 적합한 모델을 찾는 과정<syntaxhighlight lang="abl"> | |||
AutoGluon will gauge predictive performance using evaluation metric: 'accuracy' | |||
To change this, specify the eval_metric parameter of Predictor() | |||
Automatically generating train/validation split with holdout_frac=0.2, Train Rows: 400, Val Rows: 100 | |||
Fitting 13 L1 models ... | |||
Fitting model: KNeighborsUnif ... | |||
0.73 = Validation score (accuracy) | |||
0.0s = Training runtime | |||
0.01s = Validation runtime | |||
Fitting model: KNeighborsDist ... | |||
0.65 = Validation score (accuracy) | |||
0.0s = Training runtime | |||
0.0s = Validation runtime | |||
Fitting model: LightGBMXT ... | |||
0.83 = Validation score (accuracy) | |||
1.01s = Training runtime | |||
0.01s = Validation runtime | |||
Fitting model: LightGBM ... | |||
0.85 = Validation score (accuracy) | |||
0.23s = Training runtime | |||
0.01s = Validation runtime | |||
Fitting model: RandomForestGini ... | |||
0.84 = Validation score (accuracy) | |||
0.58s = Training runtime | |||
0.06s = Validation runtime | |||
Fitting model: RandomForestEntr ... | |||
0.83 = Validation score (accuracy) | |||
0.47s = Training runtime | |||
0.06s = Validation runtime | |||
Fitting model: CatBoost ... | |||
0.85 = Validation score (accuracy) | |||
1.13s = Training runtime | |||
0.01s = Validation runtime | |||
Fitting model: ExtraTreesGini ... | |||
0.82 = Validation score (accuracy) | |||
0.47s = Training runtime | |||
0.06s = Validation runtime | |||
Fitting model: ExtraTreesEntr ... | |||
0.81 = Validation score (accuracy) | |||
0.47s = Training runtime | |||
0.06s = Validation runtime | |||
Fitting model: NeuralNetFastAI ... | |||
0.82 = Validation score (accuracy) | |||
3.2s = Training runtime | |||
0.02s = Validation runtime | |||
Fitting model: XGBoost ... | |||
0.87 = Validation score (accuracy) | |||
0.23s = Training runtime | |||
0.01s = Validation runtime | |||
Fitting model: NeuralNetTorch ... | |||
0.85 = Validation score (accuracy) | |||
2.08s = Training runtime | |||
0.01s = Validation runtime | |||
Fitting model: LightGBMLarge ... | |||
0.83 = Validation score (accuracy) | |||
0.35s = Training runtime | |||
0.01s = Validation runtime | |||
Fitting model: WeightedEnsemble_L2 ... | |||
0.87 = Validation score (accuracy) | |||
0.38s = Training runtime | |||
0.0s = Validation runtime | |||
AutoGluon training complete, total runtime = 11.19s ... Best model: "WeightedEnsemble_L2" | |||
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20221125_121604/") | |||
</syntaxhighlight> |
Latest revision as of 04:44, 2 December 2022
Auto Machine Learning; 자동 기계학습; 자동 머신러닝
- AutoML은 기계학습상의 HITL을 개선하여 완전한 자동화를 추구하는 인공지능 분야 및 그 기술을 아우르는 용어이다.
AutoML의 의의[edit | edit source]
관련 도구 및 라이브러리[edit | edit source]
예시[edit | edit source]
autogluon을 이용하여 가작 적합한 모델을 찾는 과정
AutoGluon will gauge predictive performance using evaluation metric: 'accuracy'
To change this, specify the eval_metric parameter of Predictor()
Automatically generating train/validation split with holdout_frac=0.2, Train Rows: 400, Val Rows: 100
Fitting 13 L1 models ...
Fitting model: KNeighborsUnif ...
0.73 = Validation score (accuracy)
0.0s = Training runtime
0.01s = Validation runtime
Fitting model: KNeighborsDist ...
0.65 = Validation score (accuracy)
0.0s = Training runtime
0.0s = Validation runtime
Fitting model: LightGBMXT ...
0.83 = Validation score (accuracy)
1.01s = Training runtime
0.01s = Validation runtime
Fitting model: LightGBM ...
0.85 = Validation score (accuracy)
0.23s = Training runtime
0.01s = Validation runtime
Fitting model: RandomForestGini ...
0.84 = Validation score (accuracy)
0.58s = Training runtime
0.06s = Validation runtime
Fitting model: RandomForestEntr ...
0.83 = Validation score (accuracy)
0.47s = Training runtime
0.06s = Validation runtime
Fitting model: CatBoost ...
0.85 = Validation score (accuracy)
1.13s = Training runtime
0.01s = Validation runtime
Fitting model: ExtraTreesGini ...
0.82 = Validation score (accuracy)
0.47s = Training runtime
0.06s = Validation runtime
Fitting model: ExtraTreesEntr ...
0.81 = Validation score (accuracy)
0.47s = Training runtime
0.06s = Validation runtime
Fitting model: NeuralNetFastAI ...
0.82 = Validation score (accuracy)
3.2s = Training runtime
0.02s = Validation runtime
Fitting model: XGBoost ...
0.87 = Validation score (accuracy)
0.23s = Training runtime
0.01s = Validation runtime
Fitting model: NeuralNetTorch ...
0.85 = Validation score (accuracy)
2.08s = Training runtime
0.01s = Validation runtime
Fitting model: LightGBMLarge ...
0.83 = Validation score (accuracy)
0.35s = Training runtime
0.01s = Validation runtime
Fitting model: WeightedEnsemble_L2 ...
0.87 = Validation score (accuracy)
0.38s = Training runtime
0.0s = Validation runtime
AutoGluon training complete, total runtime = 11.19s ... Best model: "WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20221125_121604/")