새 문서 목록

IT 위키
새 문서 목록
등록된 사용자 숨기기 | 봇 숨기기 | 넘겨주기를 보이기
(최신 | 오래됨) ( | ) (20 | 50 | 100 | 250 | 500) 보기
  • 2024년 12월 2일 (월) 13:11Outlier (Data Science) (역사 | 편집) ‎[4,314 바이트]Dendrogram (토론 | 기여) (새 문서: '''Outlier''' refers to a data point that significantly deviates from other observations in a dataset. Outliers can arise due to variability in the data, errors in measurement, or rare events. Identifying and addressing outliers is critical in data preprocessing, as they can influence statistical analyses and machine learning models. ==Characteristics of Outliers== Outliers exhibit the following traits: *'''Deviation from Patterns:''' They do not conform to the general distribut...) 태그: 시각 편집
  • 2024년 12월 2일 (월) 06:21Principal Component Analysis (역사 | 편집) ‎[3,829 바이트]Dendrogram (토론 | 기여) (새 문서: '''Principal Component Analysis (PCA)''' is a statistical technique used for dimensionality reduction by transforming a dataset into a new coordinate system. The transformation emphasizes the directions (principal components) that maximize the variance in the data, helping to reduce the number of features while preserving essential information. ==Key Concepts== *'''Principal Components:''' New orthogonal axes computed as linear combinations of the original features. The first pr...) 태그: 시각 편집
  • 2024년 12월 2일 (월) 06:19Singular Value Decomposition (역사 | 편집) ‎[2,936 바이트]Dendrogram (토론 | 기여) (새 문서: '''Singular Value Decomposition (SVD)''' is a mathematical technique used to decompose a matrix into three component matrices. It is widely used in data analysis, dimensionality reduction, machine learning, and signal processing. ==Definition== SVD decomposes a matrix \( A \) into three matrices: *'''U:''' An orthogonal matrix containing the left singular vectors. *'''Σ (Sigma):''' A diagonal matrix with singular values sorted in descending order. *'''V^T:''' An orthogonal matr...) 태그: 시각 편집
  • 2024년 12월 2일 (월) 06:13Ontology (역사 | 편집) ‎[3,040 바이트]Dendrogram (토론 | 기여) (새 문서: '''Ontology''' in computer science and information science refers to a formal representation of knowledge within a specific domain. It defines concepts, relationships, and categories to facilitate reasoning, data integration, and knowledge sharing. ==Key Components of an Ontology== An ontology typically consists of the following elements: *'''Classes (Concepts):''' Represent the entities or objects in the domain. *'''Relationships:''' Define how classes are connected (e.g., "is-...) 태그: 시각 편집
  • 2024년 12월 2일 (월) 06:09Dimensionality Reduction (역사 | 편집) ‎[3,754 바이트]Dendrogram (토론 | 기여) (새 문서: '''Dimensionality Reduction''' is a technique used in machine learning and data analysis to reduce the number of features (dimensions) in a dataset while preserving as much relevant information as possible. It simplifies data visualization, reduces computational costs, and helps mitigate the curse of dimensionality. ==Importance of Dimensionality Reduction== Dimensionality reduction is crucial for the following reasons: *'''Improves Model Performance:''' Reducing irrelevant or r...) 태그: 시각 편집
  • 2024년 12월 2일 (월) 06:05Hash Function (역사 | 편집) ‎[3,703 바이트]Dendrogram (토론 | 기여) (새 문서: '''Hash Function''' is a mathematical function that transforms input data of arbitrary size into a fixed-length output, called a hash or digest. Hash functions are widely used in computer science, cryptography, and data management for tasks like data integrity, indexing, and secure storage. ==Characteristics of a Hash Function== A good hash function typically satisfies the following properties: *'''Deterministic:''' The same input always produces the same hash. *'''Fast Computat...) 태그: 시각 편집
  • 2024년 12월 2일 (월) 05:44Dendrogram (역사 | 편집) ‎[3,081 바이트]Dendrogram (토론 | 기여) (새 문서: '''Dendrogram''' is a tree-like diagram used to represent the hierarchical relationships among a set of data points. It is commonly used in hierarchical clustering to visualize the order and structure of clusters as they are merged or divided. The height of each branch in a dendrogram indicates the distance or dissimilarity between clusters. ==Structure of a Dendrogram== A dendrogram consists of the following components: *'''Leaves:''' Represent individual data points or initial...) 태그: 시각 편집
  • 2024년 12월 2일 (월) 05:43Hierarchical Clustering (역사 | 편집) ‎[3,367 바이트]Dendrogram (토론 | 기여) (새 문서: '''Hierarchical Clustering''' is a clustering method in machine learning and statistics that builds a hierarchy of clusters by either merging smaller clusters into larger ones (agglomerative) or dividing larger clusters into smaller ones (divisive). It is widely used for exploratory data analysis and in domains such as bioinformatics, marketing, and social network analysis. ==Types of Hierarchical Clustering== Hierarchical clustering is divided into two main types: *'''Agglomera...) 태그: 시각 편집
  • 2024년 12월 2일 (월) 05:40K-Means++ (역사 | 편집) ‎[2,884 바이트]Dendrogram (토론 | 기여) (새 문서: '''K-Means++''' is an enhanced initialization algorithm for the K-Means clustering method. It aims to improve the selection of initial cluster centroids, which is a critical step in the K-Means algorithm. By carefully choosing starting centroids, K-Means++ reduces the chances of poor clustering outcomes and accelerates convergence. ==How K-Means++ Works== K-Means++ modifies the standard K-Means initialization by ensuring that the initial centroids are chosen in a way that they a...) 태그: 시각 편집
  • 2024년 12월 2일 (월) 05:02K-Means (역사 | 편집) ‎[3,918 바이트]Dendrogram (토론 | 기여) (새 문서: '''K-Means''' is one of the most popular unsupervised machine learning algorithms used for clustering data into distinct groups. The algorithm partitions a dataset into '''k''' clusters, where each data point belongs to the cluster with the nearest mean. It is widely used for data analysis, pattern recognition, and feature engineering. ==How K-Means Works== The K-Means algorithm follows an iterative process to assign data points to clusters and optimize the cluster centroids: #I...) 태그: 시각 편집
  • 2024년 12월 1일 (일) 13:38Holdout (Data Science) (역사 | 편집) ‎[3,203 바이트]Fortify (토론 | 기여) (새 문서: '''Holdout''' in data science refers to a method used to evaluate the performance of machine learning models by splitting the dataset into separate parts, typically a training set and a testing set. The testing set, often called the "holdout set," is kept aside during model training and is only used for final evaluation to ensure unbiased performance metrics. ==How Holdout Works== The holdout method involves the following steps: *The dataset is split into two (or sometimes three...) 태그: 시각 편집
  • 2024년 12월 1일 (일) 13:22PHP-FPM pm.max children (역사 | 편집) ‎[3,975 바이트]Fortify (토론 | 기여) (새 문서: '''pm.max_children''' is a directive in PHP-FPM (FastCGI Process Manager) configuration that specifies the maximum number of child processes that can be created to handle incoming requests. This setting is critical for managing server resources and ensuring that PHP-FPM can efficiently handle concurrent traffic without overloading the server. ==Overview== *The `pm.max_children` directive determines the upper limit on the number of simultaneous PHP-FPM worker processes. *When the...) 태그: 시각 편집
  • 2024년 12월 1일 (일) 13:13Apache FollowSymLinks (역사 | 편집) ‎[3,193 바이트]Fortify (토론 | 기여) (새 문서: '''FollowSymLinks''' is a directive in the Apache HTTP Server configuration that controls whether symbolic links (symlinks) in the server's document root or other directories can be followed. Symbolic links are files that point to other files or directories. The FollowSymLinks directive is often used to manage access and behavior related to these links in a web server environment. ==Syntax== The directive is used within Apache configuration files (e.g., `httpd.conf` or `.htacces...) 태그: 시각 편집
  • 2024년 12월 1일 (일) 11:12Diaper-Beer Syndrome (역사 | 편집) ‎[2,776 바이트]Fortify (토론 | 기여) (새 문서: '''Diaper-Beer Syndrome''' refers to a popular anecdote in data mining that suggests a correlation between the sales of diapers and beer. According to the story, data analysis at a retail store revealed that young fathers often purchased diapers and beer together, especially on Friday evenings. Although this example is frequently cited to demonstrate the potential of data mining, its authenticity remains doubtful. == The Legend == The legend goes as follows: * Retail analysts d...)
  • 2024년 12월 1일 (일) 09:20Leakage (Data Science) (역사 | 편집) ‎[5,267 바이트]Prairie (토론 | 기여) (새 문서: '''Leakage''' in data science refers to a situation where information from outside the training dataset is inappropriately used to build or evaluate a model. This results in overoptimistic performance metrics during model evaluation, as the model effectively "cheats" by having access to information it would not have in a real-world application. Leakage is a critical issue in machine learning workflows and can lead to misleading conclusions and poor model generalization. ==Types...) 태그: 시각 편집
  • 2024년 12월 1일 (일) 09:02Ensemble Learning (역사 | 편집) ‎[4,866 바이트]Prairie (토론 | 기여) (Created page with "'''Ensemble Learning''' is a machine learning technique that combines multiple models, often called "base learners," to create a more powerful predictive model. By aggregating the predictions of several models, ensemble methods improve accuracy, reduce variance, and mitigate overfitting. Ensemble learning is widely used in classification, regression, and anomaly detection tasks. ==Overview== Ensemble learning leverages the idea that combining multiple models can outperfo...") 태그: 시각 편집
  • 2024년 12월 1일 (일) 08:57Boosting (역사 | 편집) ‎[4,388 바이트]Prairie (토론 | 기여) (Created page with "'''Boosting''' is an ensemble learning technique in machine learning that focuses on improving the performance of weak learners (models that perform slightly better than random guessing) by sequentially training them on the mistakes made by previous models. Boosting reduces bias and variance, making it effective for building accurate and robust predictive models. ==Overview== The key idea behind boosting is to combine multiple weak learners into a single strong learner....") 태그: 시각 편집
  • 2024년 12월 1일 (일) 04:57Sidebar Korean (역사 | 편집) ‎[832 바이트]Itwiki (토론 | 기여) (새 문서: * 분류별 보기 ** :분류:일반 IT용어|일반 IT용어 ** :분류:프로젝트 관리|프로젝트 관리 ** :분류:디지털 서비스|디지털 서비스 ** :분류:블록체인|블록체인 ** :분류:인공지능|인공지능 ** :분류:소프트웨어 공학|소프트웨어 공학 ** :분류:운영체제|운영체제 ** :분류:컴퓨터 구조|컴퓨터 구조 ** :분류:자료 구조|자료 구조 ** :분류:데이터 과학|데이터 과학 ** :분류:데이터...)
  • 2024년 12월 1일 (일) 04:57Sidebar English (역사 | 편집) ‎[78 바이트]Itwiki (토론 | 기여) (새 문서: * Category ** :Category:Network|Network ** :Category:Data Science|Data Science) 태그: 시각 편집: 전환됨
  • 2024년 12월 1일 (일) 03:53Bootstrap Aggregating (역사 | 편집) ‎[4,422 바이트]Prairie (토론 | 기여) (Created page with "'''Bootstrap Aggregating''', commonly known as '''Bagging''', is an ensemble learning method designed to improve the stability and accuracy of machine learning models. It works by combining the predictions of multiple base models, each trained on different subsets of the data created through the bootstrap sampling technique. Bagging reduces variance, mitigates overfitting, and improves model robustness. == Overview == Bootstrap aggregating is built on two fundamental co...")
  • 2024년 11월 30일 (토) 14:19Min-Max Scaling (역사 | 편집) ‎[3,838 바이트]Fortify (토론 | 기여) (Created page with "'''Min-Max Scaling''' is a data normalization technique used to scale features to a fixed range, typically [0, 1]. It ensures that all features contribute equally to the analysis or model by transforming the original values proportionally to fit within the specified range. Min-Max Scaling is widely used in data preprocessing for machine learning and statistical analysis. ==Overview== Min-Max Scaling transforms the data linearly by rescaling each value based on the featur...") 태그: 시각 편집
  • 2024년 11월 30일 (토) 11:48PHP-FPM Dynamic Process Management (역사 | 편집) ‎[3,693 바이트]Fortify (토론 | 기여) (Created page with "'''PHP-FPM Dynamic Process Management''' refers to one of the modes available in PHP-FPM (FastCGI Process Manager) to manage worker processes. In this mode, the number of worker processes dynamically adjusts based on server load, ensuring efficient use of system resources while maintaining the ability to handle varying traffic levels. ==Overview== PHP-FPM is a robust process manager for PHP, and its dynamic mode is designed to strike a balance between performance and res...") 태그: 시각 편집
  • 2024년 11월 30일 (토) 11:45PHP-FPM pm.max spare servers (역사 | 편집) ‎[2,705 바이트]Fortify (토론 | 기여) (Created page with "'''pm.max_spare_servers''' is a configuration directive in PHP-FPM (FastCGI Process Manager) that specifies the maximum number of idle (spare) worker processes to maintain in the pool. It is used when the process manager (pm) is set to '''dynamic'''. This directive ensures that server resources are not wasted by limiting the number of idle worker processes. ==Overview== In dynamic process management mode, PHP-FPM adjusts the number of worker processes based on the server...") 태그: 시각 편집
  • 2024년 11월 30일 (토) 11:44PHP-FPM pm.min spare servers (역사 | 편집) ‎[2,705 바이트]Fortify (토론 | 기여) (Created page with "'''pm.min_spare_servers''' is a configuration directive in PHP-FPM (FastCGI Process Manager) used to specify the minimum number of idle (spare) worker processes that should be maintained in the pool. It is applicable when the process manager (pm) is set to '''dynamic'''. This directive ensures that there are always enough idle workers available to handle incoming requests without unnecessary delays. ==Overview== When PHP-FPM is configured to use the '''dynamic''' process...") 태그: 시각 편집
  • 2024년 11월 30일 (토) 11:28Time Series Data (역사 | 편집) ‎[3,841 바이트]Fortify (토론 | 기여) (Created page with "'''Time Series Data''' refers to a sequence of data points collected or recorded at successive, evenly spaced points in time. This type of data is used to track changes over time and is a critical component in various fields like finance, economics, environmental science, and machine learning. ==Overview== Time series data captures how a variable evolves over time. The primary characteristic of time series data is its temporal ordering, meaning that the order of the obse...") 태그: 시각 편집
  • 2024년 11월 30일 (토) 11:17Lagged Time Series (역사 | 편집) ‎[3,014 바이트]Fortify (토론 | 기여) (Created page with "'''Lagged Time Series''' refers to a transformation of time series data where previous values (lags) of the series are used to predict or understand future values. Lagged variables are essential in time series analysis and forecasting, as they help capture the temporal dependencies and autocorrelation within the data. ==Overview== In a lagged time series, the value of a variable at a specific time point is related to its values at earlier time points. This is particularl...") 태그: 시각 편집
  • 2024년 11월 30일 (토) 09:56Shapley Value (역사 | 편집) ‎[3,378 바이트]Fortify (토론 | 기여) (Created page with "'''Shapley Value''' is a concept from cooperative game theory that provides a fair distribution of a total "payout" among players based on their individual contributions to the group. It is widely used in economics, decision-making, and machine learning for feature attribution and model interpretability. The Shapley Value ensures that each participant's contribution is valued in a mathematically fair and consistent manner....") 태그: 시각 편집
  • 2024년 11월 30일 (토) 07:38SHAP Analysis (역사 | 편집) ‎[2,985 바이트]Fortify (토론 | 기여) (Created page with "'''SHAP Analysis''' (SHapley Additive exPlanations) is a machine learning interpretability technique based on cooperative game theory. It is used to explain the predictions of complex machine learning models by attributing the contribution of each feature to the model's output. SHAP values provide a consistent and mathematically sound way to interpret individual predictions and global feature importance. ==Overview== SHAP values are derived from Shapley values, a concept...") 태그: 시각 편집
  • 2024년 11월 30일 (토) 07:14Beeswarm Plot (역사 | 편집) ‎[3,032 바이트]Fortify (토론 | 기여) (Created page with "'''Beeswarm Plot''' is a data visualization technique used to display individual data points along a single axis, often overlaid with a distribution representation. It helps to visualize the spread, density, and clustering of data points while avoiding overlap. Beeswarm plots are commonly used in exploratory data analysis to understand data distributions and outliers. ==Overview== thumb|Beeswarm Plot Beeswarm plots arrange individual data point...") 태그: 시각 편집
  • 2024년 11월 30일 (토) 06:58Waterfall Plot (역사 | 편집) ‎[3,421 바이트]162.158.63.105 (토론) (Created page with "'''Waterfall Plot''' is a data visualization technique used to represent sequential changes in the value of a variable, often to show the cumulative effect of positive and negative contributions over time or across categories. This plot is commonly used in fields like financial analysis, engineering, and data science to break down the components of a total change. == Overview == A waterfall plot displays data as a series of bars, where: * Each bar represents an individu...") 태그: 시각 편집: 전환됨
  • 2024년 11월 30일 (토) 03:14DNS PROBE FINISHED NXDOMAIN (역사 | 편집) ‎[3,020 바이트]Fortify (토론 | 기여) (Created page with "'''DNS_PROBE_FINISHED_NXDOMAIN''' is an error message displayed by web browsers, such as Google Chrome, indicating that the Domain Name System (DNS) could not resolve the domain name into an IP address. This error means that the requested domain does not exist or the DNS query failed. == Overview == When a user tries to access a website, the DNS translates the domain name (e.g., example.com) into an IP address. The '''NXDOMAIN''' in the error message stands for "Non-Exi...") 태그: 시각 편집: 전환됨
  • 2024년 11월 29일 (금) 14:39Extrapolation (Data Science) (역사 | 편집) ‎[2,797 바이트]Fortify (토론 | 기여) (Created page with "'''Extrapolation''' is a data science technique used to estimate or predict values beyond the range of observed data. It involves extending a known trend, pattern, or relationship to predict outcomes for new, unobserved data points. While powerful, extrapolation can introduce significant errors if the assumptions about the data's behavior outside the observed range are incorrect. ==Overview== Extrapolation assumes that trends or relationships in the known data set remain...") 태그: 시각 편집
  • 2024년 11월 29일 (금) 14:32Confounder (Data Science) (역사 | 편집) ‎[3,025 바이트]Fortify (토론 | 기여) (Created page with "'''Confounder''' is a variable that influences both the dependent variable and one or more independent variables, potentially leading to a spurious association or bias in the analysis. In data science, identifying and addressing confounders is crucial to ensure the validity of causal inferences and statistical models. ==Overview== Confounders introduce bias by creating a false relationship between the variables of interest. If not properly controlled, they can lead to in...") 태그: 시각 편집
  • 2024년 11월 25일 (월) 06:16Routing Table (역사 | 편집) ‎[3,574 바이트]Prairie (토론 | 기여) (Created page with "'''Routing Table''' is a data structure used by routers to store and manage route information. It determines the best path for forwarding packets to their destination. Each entry in a routing table corresponds to a specific destination network and includes information about the next hop, metrics, and routing protocol. ==Overview== The routing table is a fundamental component of the control plane in a network. It is built and maintained by routing protocols or through man...") 태그: 시각 편집
  • 2024년 11월 25일 (월) 06:10Longest Prefix Matching (역사 | 편집) ‎[3,042 바이트]Prairie (토론 | 기여) (Created page with "'''Longest Prefix Matching (LPM)''' is an algorithm used in networking to determine the best matching route for a given IP address. It is primarily employed in routing tables and forwarding tables to decide the next hop for packet forwarding. The "longest prefix" refers to the route entry with the most specific (longest) subnet mask that matches the destination IP. ==Overview== Longest Prefix Matching ensures that packets are routed along the most specific path available...") 태그: 시각 편집
  • 2024년 11월 25일 (월) 06:08Forwarding Table (역사 | 편집) ‎[3,098 바이트]Prairie (토론 | 기여) (Created page with "'''Forwarding Table''' is a data structure used by network devices, such as routers and switches, to determine the next hop or output interface for forwarding packets. It plays a crucial role in the data plane, enabling efficient and accurate packet forwarding based on precomputed rules. ==Overview== The forwarding table maps packet header information, such as destination IP addresses or MAC addresses, to specific output ports or next-hop devices. It is typically built u...") 태그: 시각 편집
  • 2024년 11월 25일 (월) 05:58Network Plane (역사 | 편집) ‎[4,253 바이트]Prairie (토론 | 기여) (Created page with "'''Network Plane''' refers to the functional layers of a network architecture, each responsible for specific tasks in the operation and management of a network. These planes are essential to understanding and designing modern networks, particularly in the context of Software-Defined Networking (SDN) and traditional networking models. ==Overview== A network plane is a conceptual division that separates the functions of networking into distinct areas, enabling modularity a...") 태그: 시각 편집
  • 2024년 11월 22일 (금) 12:41금 시세 (역사 | 편집) ‎[4,216 바이트]Betripping (토론 | 기여) (Created page with "'''금 시세'''는 금의 현재 시장 가격을 의미하며, 국제 및 국내 시장에서 실시간으로 변동한다. 금 시세는 투자, 제조, 장신구 제작 및 중앙은행의 정책 결정에 중요한 기준으로 사용되며, 다양한 경제적 요인에 의해 영향을 받는다. 보통 한국에서는 "금값"이라고 한 단어로 쓰기도 한다. ==금 시세의 결정 요인== *'''국제 금 시세''' **금은 국제 시장에서 미국 달...") 태그: 시각 편집
  • 2024년 11월 22일 (금) 10:48OpenFlow Controller (역사 | 편집) ‎[4,215 바이트]162.158.158.59 (토론) (Created page with "'''OpenFlow Controller''' is a central component in Software-Defined Networking (SDN) architectures. It provides centralized control and management of OpenFlow-enabled network devices, such as switches and routers, using the OpenFlow protocol. The controller enables dynamic and programmable network management by separating the control plane from the data plane. ==Overview== An OpenFlow Controller serves as the "brain" of an SDN network, making decisions about how packets...") 태그: 시각 편집
  • 2024년 11월 22일 (금) 10:04멀티캐스트 (역사 | 편집) ‎[3,773 바이트]172.70.114.101 (토론) (Created page with "'''Multicast''' '''멀티캐스트'''는 네트워크 통신 방식 중 하나로, 한 송신자가 특정 그룹에 속한 여러 수신자에게 데이터를 전송하는 방법을 의미한다. 이는 유니캐스트(단일 수신자)와 브로드캐스트(모든 수신자) 사이의 방식으로, 효율적이고 대역폭을 절약하는 데이터 전송 기술이다. ==개념== 멀티캐스트는 송신자가 데이터를 특정 그룹에 속한 장치들만 수신...") 태그: 시각 편집
  • 2024년 11월 22일 (금) 09:57브로드캐스트 (역사 | 편집) ‎[6,273 바이트]162.158.62.213 (토론) (Created page with "'''Broadcast''' 브로드캐스트는 컴퓨터 네트워크에서 하나의 장치가 동일 네트워크 상의 모든 장치에게 데이터를 전송하는 통신 방식이다. 브로드캐스트는 LAN(Local Area Network)에서 주로 사용되며, 네트워크 운영에 있어 중요한 역할을 한다. ==주요 개념== '''브로드캐스트 주소''' *네트워크 내 모든 장치가 패킷을 수신하도록 설정된 IP 주소. IPv4 네트워크에서는 `2...") 태그: 시각 편집
  • 2024년 11월 21일 (목) 06:44Iron Curtain (역사 | 편집) ‎[2,385 바이트]Deposition (토론 | 기여) (Created page with "The '''Iron Curtain''' refers to the political, military, and ideological barrier erected by the Soviet Union after World War II to separate itself and its satellite states in Eastern Europe from the Western world. The term symbolizes the division between communist and non-communist countries during the Cold War. thumb|Iron Curtain === Origins of the Term === The phrase "Iron Curtain" became popular after it was used by British Prime Minister '...") 태그: 시각 편집
  • 2024년 11월 21일 (목) 04:04Finite State Machine (역사 | 편집) ‎[3,023 바이트]Deposition (토론 | 기여) (Created page with "A '''Finite State Machine''' (FSM) is a computational model used to design and analyze the behavior of systems. FSMs are characterized by a finite number of states, transitions between those states, and actions that result from those transitions. ==Overview== A finite state machine consists of: *A finite set of states. *A finite set of inputs. *A transition function that determines the next state for a given state and input. *An initial state. *(Optionally) a set of fina...") 태그: 시각 편집
  • 2024년 11월 14일 (목) 13:44TCP 혼잡 제어 (역사 | 편집) ‎[3,175 바이트]Prairie (토론 | 기여) (Created page with "'''TCP 혼잡 제어'''(TCP Congestion Control)는 TCP(Transmission Control Protocol)에서 네트워크 혼잡을 관리하고 데이터 손실을 줄이기 위한 메커니즘이다. 혼잡 제어는 네트워크 상태에 따라 전송 속도를 동적으로 조절하여 네트워크 자원의 효율성을 높이고, 혼잡으로 인한 성능 저하를 방지하는 데 중요한 역할을 한다. ==혼잡 제어 알고리즘의 주요 단계== '''혼잡 회피'''(Con...") 태그: 시각 편집
  • 2024년 11월 14일 (목) 11:39TCP 시퀀스 번호 (역사 | 편집) ‎[2,760 바이트]Prairie (토론 | 기여) (Created page with "'''TCP 시퀀스 번호'''(TCP Sequence Number)는 TCP(Transmission Control Protocol)에서 데이터 패킷의 순서를 추적하고, 전송 중 손실된 데이터의 재전송 및 올바른 데이터 조립을 보장하기 위해 사용하는 숫자이다. 시퀀스 번호는 TCP 연결에서 매우 중요한 역할을 하며, 송신 측에서 전송하는 각 바이트에 고유한 번호를 할당한다. 수신 측에서는 이를 기반으로 패킷이 올바른...") 태그: 시각 편집
  • 2024년 11월 14일 (목) 05:30데이터베이스 후보 키 (역사 | 편집) ‎[2,823 바이트]핵톤 (토론 | 기여) (Created page with "'''후보 키'''(Candidate Key)는 데이터베이스 테이블에서 각 행을 고유하게 식별할 수 있는 속성 또는 속성들의 집합을 의미한다. 후보 키는 테이블 내의 모든 행을 유일하게 구분할 수 있는 최소한의 속성 집합으로, 기본 키(primary key)로 선택될 수 있는 후보가 된다. ==후보 키의 조건== 후보 키가 되기 위해서는 다음 조건을 만족해야 한다. *'''유일성'''(Uniqueness): 후...") 태그: 시각 편집
  • 2024년 11월 14일 (목) 05:28데이터베이스 보이스-코드 정규형 (역사 | 편집) ‎[3,302 바이트]핵톤 (토론 | 기여) (Created page with "'''보이스-코드 정규형'''(Boyce-Codd Normal Form, BCNF)은 데이터베이스 정규화의 네 번째 단계로, 제3정규형(3NF)을 강화한 형태이다. 보이스-코드 정규형은 제3정규형을 만족하면서, 모든 결정자가 후보 키가 되도록 요구하여 데이터베이스의 설계를 더욱 엄격하게 한다. ==보이스-코드 정규형의 조건== 보이스-코드 정규형을 만족하기 위해서는 다음 조건을 충족해야...") 태그: 시각 편집
  • 2024년 11월 14일 (목) 04:55데이터베이스 제3정규형 (역사 | 편집) ‎[3,346 바이트]핵톤 (토론 | 기여) (Created page with "'''Third Normal Form, 3NF''' '''제3정규형'''은 데이터베이스 정규화의 세 번째 단계로, 제2정규형(2NF)을 만족하면서 테이블 내에서 이행적 종속성(transitive dependency)을 제거하는 것을 목표로 한다. 제3정규형은 기본 키에만 종속하도록 설계하여 데이터 중복을 줄이고 데이터 무결성을 더욱 강화한다. ==제3정규형의 조건== 제3정규형을 만족하기 위해...") 태그: 시각 편집
  • 2024년 11월 14일 (목) 04:48부분 함수 종속성 (역사 | 편집) ‎[2,763 바이트]핵톤 (토론 | 기여) (Created page with "'''Partial Functional Dependency''' '''부분 함수 종속성'''은 데이터베이스 정규화 과정에서, 합성 키(composite key)를 가진 릴레이션에서 기본 키의 일부에만 종속하는 속성이 존재하는 경우를 의미한다. 부분 함수 종속성은 데이터 중복과 비효율적인 데이터 구조를 초래할 수 있으며, 제2정규형(2NF)에서는 이를 제거하는 것이 목표이다. ==개요== 부분 함수 종속성은 주...") 태그: 시각 편집
  • 2024년 11월 14일 (목) 04:46데이터베이스 제2정규형 (역사 | 편집) ‎[3,025 바이트]핵톤 (토론 | 기여) (Created page with "'''Second Normal Form, 2NF''' '''제2정규형'''은 데이터베이스 정규화의 두 번째 단계로, 제1정규형(1NF)을 만족하면서 테이블 내에서 '''부분 함수 종속성(�Partial Functional Dependency)'''을 제거하는 것을 목표로 한다. 제2정규형은 기본 키의 일부에만 종속하는 속성을 제거하여 데이터 중복을 줄이고 데이터 무결성을 향상시킨다. ==제2정규형...") 태그: 시각 편집
(최신 | 오래됨) ( | ) (20 | 50 | 100 | 250 | 500) 보기