빅데이터분석기사 2회

From IT Wiki
Revision as of 17:20, 22 April 2021 by 이수민 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


일정[edit | edit source]

2020년 말에 1회 시험이 치러질 예정이었으나, 코로나19로 인해 취소되고 2회부터 시행
  • 필기 시험: 2021.4.17(토)
  • 실기 시험: 2020.6.19(토)

평가[edit | edit source]

  • 문제의 퀄리티에 대한 지적이 많음
  • 전반적으로 ADSP와 유사하다는 평가

기출 키워드[edit | edit source]

문제 번호 1과목

빅데이터 분석기회

2과목

빅데이터 탐색

3과목

빅데이터 모델링

4과목

빅데이터 결과해석

1 ETL 박스플롯 후진 소거법 bias, variance
2 딥 러닝 개념 변수 선택 인공 신경망 개념 인공 신경망하이퍼파라미터
3 분석 프로세스 5단계 학습데이터 imblanced CNN 계산 scatter plot
4 지도학습 파생변수 잔차진단 bar chart
5 비식별화 처리기준 불량률 계산 (조건부 확률) 서포트벡터머신(SVM) 불균형 데이터셋
6 비식별화 특징과 개념 정규확률 계산 MDS(다차원 척도법) roc curve
7 데이터 형태를 파악? 검정하는 것 MLE θ 계산 라쏘, L1 규제 내용으로 나옴 혼동행률
8 최적화 그래프 분석 모델링 절차 파라미터, 하이퍼파라미터 차이
9 개인정보보호법 상관계수 로지스틱 K means 군집
10 정형데이터 품질 보증 병렬 차트 혼동 행렬 FP, TP계산 F1 스코어
11 EDA 개념 Z-score 계산(p-value 이용) 부스팅(GBM) 모델선택
12 모델링 개념 점추정 베이지안 확률계산 적합도 검정
13 진단 분석 1종 오류, 2종 오류 홀드아웃 인포그래픽
14 이상치(Outlier) 차원의 저주 비지도 학습 모델 선택 방법
15 데이터 수집 방법 중앙값(선수들 연봉, 평균이 옳은가 중앙값이 옳은가) 분류 민감도, 특이도 설명
16 분석 성숙도 층화 추출 군집 모형진단
17 개인정보수집 동의안 Class imbalanced 시계열 Data분석 결과 활용
18 Bottom-up 분석 확률분포 (포아송 포함) 비정형 데이터 시계열
19 데이터 품질 평가 확률분포 랜덤 포레스트 선형 회귀
20 데이터 거버넌스 t분포, z분포 K-fold 시계열 그래프 보고  추세, 계절성, 예측 판단

참고 문헌[edit | edit source]