딥 러닝의 심층 신경망을 이용한 모델에 적대적 교란(Adversarial Pertubation)을 적용하여 오분류를 유발하고 신뢰도 감소를 야기하는 머신러닝 공격 기법
- AI 모델의 역기능 효과를 유발하여 AI 산업 및 서비스 응용 분야 활성화의 저해 요인으로 작용
유형
|
설명
|
회피 공격
(Evasion Attack)
|
- 인간의 눈으로 식별하기 어려운 노이즈 데이터를 삽입하여 변조
- 사례 : 정지 표시 표지판을 속도 제한 표시로 잘못 인식하여 자율 주행 자동차의 오작동을 유발(적대적 스티커)
|
중독 공격
(Poisoning Attack)
|
- 데이터셋에 악성 데이터를 삽입하는 것과 같이 AI 모델의 학습 과정에 관여하여 AI 시스템 자체를 손상시키는 공격
- 사례 : MS의 인공지능 채팅봇 테이(Tay)가 극우자들의 악의적인 공격에 노출되어 욕설, 인종차별 발언을 남발하여 운영 16 시간만에 중단
|
탐색적 공격
(Exploratory Attack)
|
- AI 모델의 주어진 입력에 대해 출력되는 분류 결과와 신뢰도(Confidence)를 분석하여 역으로 데이터를 추출
- 공개된 API 가 존재하는 학습모델의 정보를 추출하여 기능적으로 유사한 모델을 구현할 수 있는 블랙-박스 공격(Black-Box Attacks)
|
구분
|
대응 방안
|
예방
|
- (적대적 훈련) 머신러닝 훈련 단계에서 예상 가능한 적대적 사례 데이터를 충분히 입력하여 저항성을 향상
- 사례 : Defense-GAN
|
탐지
|
- 원래의 모델과 별도로 적대적 공격 여부를 판단하기 위한 모델을 추가하여 결과값을 비교
|
차단
|
- 반복적 쿼리 조회 또는 공개된 API 의 실행 횟수 제한
|
은닉
|
- 결과값이 노출되지 않도록 처리
- 분석이 불가능 하도록 암호화 또는 비식별 처리
|
- 정보관리기술사 123회 하나둘셋 동기회 기출풀이집