가리키는 글의 최근 바뀜
IT 위키
← 분류:딥 러닝
해당 문서에 연결된 문서의 변경사항을 확인하려면 문서 이름을 입력하십시오. (분류에 들어있는 문서를 보려면 분류:분류명으로 입력하십시오). 내 주시문서 목록에 있는 문서의 변경사항은 굵게 나타납니다.
약어 목록:
- 새글
- 새 문서 (새 문서 목록도 보세요)
- 잔글
- 사소한 편집
- 봇
- 봇이 수행한 편집
- (±123)
- 바이트 수로 표현한 문서 크기의 차이
2025년 9월 18일 (목)
새글 09:46 | 비전 트랜스포머 차이역사 +5,822 인공무능 토론 기여 (새 문서: 비전 트랜스포머(Vision Transformer, 줄여서 ViT)는 이미지 처리를 위해 고안된 딥러닝 구조로, 전통적인 합성곱 신경망(CNN) 대신 트랜스포머(self-attention) 아키텍처를 활용하여 이미지를 “패치(patch)” 단위로 처리한다. <ref>“An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale”, arXiv:2010.11929, https://arxiv.org/abs/2010.11929</ref> ==정의== 비전 트랜스포머는 이미지를 일정...) |
2025년 9월 11일 (목)
새글 03:28 | 학습률 스케줄링 차이역사 +2,565 인공무능 토론 기여 (새 문서: 학습률 스케줄링(learning rate scheduling)은 머신러닝 및 딥러닝 모델의 학습 과정에서 학습률을 시간 경과나 손실 함수의 상태에 따라 동적으로 조정하는 전략을 의미한다. 학습률은 최적화 성능에 큰 영향을 미치므로, 정적인 값 대신 변화하는 학습률을 사용하면 더 빠르고 안정적인 수렴을 유도할 수 있다. ==개요== 학습률은 경사 하강법 기반 최적화 알고리즘에서 파...) |
|
새글 03:19 | 확률적 경사 하강법 2개 바뀜 역사 +5,109 [인공무능 (2×)] | |||
|
03:19 (최신 | 이전) +2,620 인공무능 토론 기여 태그: 시각 편집 | ||||
새글 |
|
03:04 (최신 | 이전) +2,489 인공무능 토론 기여 (새 문서: 확률적 경사 하강법(Stochastic Gradient Descent, SGD)은 머신러닝 및 딥러닝에서 손실 함수를 최소화하기 위해 훈련 데이터 중 하나의 샘플만을 사용하여 매개변수를 업데이트하는 최적화 알고리즘이다. ==개요== 확률적 경사 하강법은 경사 하강법의 변형 기법으로, 전체 데이터셋이 아닌 단일 샘플을 기준으로 손실 함수의 기울기를 계산하고 그 결과를 즉시 반영해 파라...) 태그: 시각 편집 |
새글 03:05 | 미니배치 경사 하강법 차이역사 +2,687 인공무능 토론 기여 (새 문서: 미니배치 경사 하강법(Mini-Batch Gradient Descent)은 머신러닝 및 딥러닝에서 전체 훈련 데이터를 일정한 크기의 소규모 집합으로 나눈 후, 각 집합(미니배치)을 사용하여 손실 함수의 기울기를 계산하고 파라미터를 갱신하는 최적화 알고리즘이다. ==개요== 미니배치 경사 하강법은 배치 경사 하강법과 확률적 경사 하강법(SGD)의 절충안으로, 계산 효율성과 수렴 안정성 사...) |
새글 03:03 | 경사 하강법 차이역사 +2,438 인공무능 토론 기여 (새 문서: '''경사 하강법(Gradient Descent)'''은 머신러닝 및 딥러닝에서 손실 함수의 값을 최소화하기 위해 매개변수를 반복적으로 갱신하는 최적화 기법이다. ==개요== 경사 하강법은 손실 함수의 기울기, 즉 그래디언트(gradient)를 계산하여, 그 반대 방향으로 파라미터를 이동시킴으로써 손실 값을 점차 줄여 나가는 방식이다. 함수의 기울기가 0에 가까워질수록 최솟값에 수렴하...) |
새글 01:56 | 리키 렐루 차이역사 +2,010 인공무능 토론 기여 (새 문서: 리키 렐루(Leaky ReLU)는 입력값이 음수일 때에도 완전히 0이 되지 않고, 작은 기울기를 유지하는 활성화 함수이다. 이 함수는 딥러닝에서 흔히 사용되는 ReLU(Rectified Linear Unit)의 변형으로, '죽은 뉴런(dying neuron)' 문제를 완화하기 위해 제안되었다. ==정의== 리키 렐루는 입력값 x가 0보다 크면 x 그대로 출력하고, 0 이하일 경우 작은 기울기를 곱한 값(예: 0.01 × x)을 출력하...) |
|
새글 01:47 | 멀티 레이어 퍼셉트론 2개 바뀜 역사 +2,101 [인공무능 (2×)] | |||
|
01:47 (최신 | 이전) +102 인공무능 토론 기여 태그: 시각 편집 | ||||
새글 |
|
01:26 (최신 | 이전) +1,999 인공무능 토론 기여 (새 문서: 멀티 레이어 퍼셉트론(Multi‑Layer Perceptron, MLP)은 입력층, 하나 이상의 은닉층 및 출력층으로 구성된 완전 연결(feedforward) 인공 신경망이다. ==구조== MLP는 최소 세 개의 층, 즉 입력층, 하나 이상의 은닉층(hidden layer), 그리고 출력층(output layer)으로 구성된다. 각 은닉층과 출력층의 뉴런은 이전 층의 모든 뉴런과 완전하게 연결되어 있다. ==활성화 함수== MLP에서는 각 뉴...) 태그: 시각 편집 |