모든 공개 기록
IT 위키
IT 위키에서 사용할 수 있는 모든 기록이 표시됩니다. 기록 종류나 사용자 이름(대소문자 구별) 또는 영향을 받는 문서(대소문자 구별)를 선택하여 범위를 좁혀서 살펴볼 수 있습니다.
(최신 | 오래됨) (다음 50개 | 이전 50개) (20 | 50 | 100 | 250 | 500) 보기- 2024년 11월 21일 (목) 04:04 Deposition 토론 기여님이 Finite State Machine 문서를 만들었습니다 (Created page with "A '''Finite State Machine''' (FSM) is a computational model used to design and analyze the behavior of systems. FSMs are characterized by a finite number of states, transitions between those states, and actions that result from those transitions. ==Overview== A finite state machine consists of: *A finite set of states. *A finite set of inputs. *A transition function that determines the next state for a given state and input. *An initial state. *(Optionally) a set of fina...") 태그: 시각 편집
- 2024년 11월 21일 (목) 03:58 Deposition 토론 기여 계정이 생성되었습니다
- 2024년 11월 14일 (목) 13:44 Prairie 토론 기여님이 TCP 혼잡 제어 문서를 만들었습니다 (Created page with "'''TCP 혼잡 제어'''(TCP Congestion Control)는 TCP(Transmission Control Protocol)에서 네트워크 혼잡을 관리하고 데이터 손실을 줄이기 위한 메커니즘이다. 혼잡 제어는 네트워크 상태에 따라 전송 속도를 동적으로 조절하여 네트워크 자원의 효율성을 높이고, 혼잡으로 인한 성능 저하를 방지하는 데 중요한 역할을 한다. ==혼잡 제어 알고리즘의 주요 단계== '''혼잡 회피'''(Con...") 태그: 시각 편집
- 2024년 11월 14일 (목) 12:01 Prairie 토론 기여님이 TCP 윈도 사이즈 문서를 만들었습니다 (Created page with "'''TCP Window Size''' '''TCP 윈도 사이즈'''는 TCP(Transmission Control Protocol)에서 송신 측이 수신 측의 확인 응답(ACK) 없이도 전송할 수 있는 데이터의 최대 크기를 나타낸다. 윈도 사이즈는 네트워크의 속도와 수신 측의 버퍼 용량에 맞춰 조절되며, 데이터 전송의 효율성과 네트워크 혼잡을 관리하는 데 중요한 역할을 한다. 수신 측은 자신의 윈도 사이즈를 송신 측에...") 태그: 시각 편집
- 2024년 11월 14일 (목) 11:39 Prairie 토론 기여님이 TCP 시퀀스 번호 문서를 만들었습니다 (Created page with "'''TCP 시퀀스 번호'''(TCP Sequence Number)는 TCP(Transmission Control Protocol)에서 데이터 패킷의 순서를 추적하고, 전송 중 손실된 데이터의 재전송 및 올바른 데이터 조립을 보장하기 위해 사용하는 숫자이다. 시퀀스 번호는 TCP 연결에서 매우 중요한 역할을 하며, 송신 측에서 전송하는 각 바이트에 고유한 번호를 할당한다. 수신 측에서는 이를 기반으로 패킷이 올바른...") 태그: 시각 편집
- 2024년 11월 14일 (목) 05:30 핵톤 토론 기여님이 데이터베이스 후보 키 문서를 만들었습니다 (Created page with "'''후보 키'''(Candidate Key)는 데이터베이스 테이블에서 각 행을 고유하게 식별할 수 있는 속성 또는 속성들의 집합을 의미한다. 후보 키는 테이블 내의 모든 행을 유일하게 구분할 수 있는 최소한의 속성 집합으로, 기본 키(primary key)로 선택될 수 있는 후보가 된다. ==후보 키의 조건== 후보 키가 되기 위해서는 다음 조건을 만족해야 한다. *'''유일성'''(Uniqueness): 후...") 태그: 시각 편집
- 2024년 11월 14일 (목) 05:28 핵톤 토론 기여님이 후보 키 문서를 만들었습니다 (Redirected page to 데이터베이스 후보 키) 태그: 새 넘겨주기 시각 편집
- 2024년 11월 14일 (목) 05:28 핵톤 토론 기여님이 데이터베이스 보이스-코드 정규형 문서를 만들었습니다 (Created page with "'''보이스-코드 정규형'''(Boyce-Codd Normal Form, BCNF)은 데이터베이스 정규화의 네 번째 단계로, 제3정규형(3NF)을 강화한 형태이다. 보이스-코드 정규형은 제3정규형을 만족하면서, 모든 결정자가 후보 키가 되도록 요구하여 데이터베이스의 설계를 더욱 엄격하게 한다. ==보이스-코드 정규형의 조건== 보이스-코드 정규형을 만족하기 위해서는 다음 조건을 충족해야...") 태그: 시각 편집
- 2024년 11월 14일 (목) 04:55 핵톤 토론 기여님이 데이터베이스 제3정규형 문서를 만들었습니다 (Created page with "'''Third Normal Form, 3NF''' '''제3정규형'''은 데이터베이스 정규화의 세 번째 단계로, 제2정규형(2NF)을 만족하면서 테이블 내에서 이행적 종속성(transitive dependency)을 제거하는 것을 목표로 한다. 제3정규형은 기본 키에만 종속하도록 설계하여 데이터 중복을 줄이고 데이터 무결성을 더욱 강화한다. ==제3정규형의 조건== 제3정규형을 만족하기 위해...") 태그: 시각 편집
- 2024년 11월 14일 (목) 04:48 핵톤 토론 기여님이 부분 함수 종속성 문서를 만들었습니다 (Created page with "'''Partial Functional Dependency''' '''부분 함수 종속성'''은 데이터베이스 정규화 과정에서, 합성 키(composite key)를 가진 릴레이션에서 기본 키의 일부에만 종속하는 속성이 존재하는 경우를 의미한다. 부분 함수 종속성은 데이터 중복과 비효율적인 데이터 구조를 초래할 수 있으며, 제2정규형(2NF)에서는 이를 제거하는 것이 목표이다. ==개요== 부분 함수 종속성은 주...") 태그: 시각 편집
- 2024년 11월 14일 (목) 04:46 핵톤 토론 기여님이 데이터베이스 제2정규형 문서를 만들었습니다 (Created page with "'''Second Normal Form, 2NF''' '''제2정규형'''은 데이터베이스 정규화의 두 번째 단계로, 제1정규형(1NF)을 만족하면서 테이블 내에서 '''부분 함수 종속성(�Partial Functional Dependency)'''을 제거하는 것을 목표로 한다. 제2정규형은 기본 키의 일부에만 종속하는 속성을 제거하여 데이터 중복을 줄이고 데이터 무결성을 향상시킨다. ==제2정규형...") 태그: 시각 편집
- 2024년 11월 14일 (목) 04:35 핵톤 토론 기여님이 데이터베이스 제1정규형 문서를 만들었습니다 (Created page with "'''제1정규형'''(First Normal Form, 1NF)은 데이터베이스 정규화의 첫 번째 단계로, 테이블의 모든 속성이 원자값(atomic value)을 가지도록 설계하는 것을 의미한다. 즉, 테이블 내의 각 열(속성)은 더 이상 나눌 수 없는 단일 값을 가져야 한다. 이를 통해 데이터의 중복을 줄이고 데이터 무결성을 강화할 수 있다. ==제1정규형의 조건== 제1정규형을 만족하기 위해서는 다...") 태그: 시각 편집
- 2024년 11월 14일 (목) 01:39 Prairie 토론 기여님이 Apache AllowOverride 문서를 만들었습니다 (Created page with "The '''AllowOverride''' directive in Apache HTTP Server is used to specify which types of directives can be overridden by `.htaccess` files in specific directories. By default, Apache uses configuration files like `httpd.conf` or `apache2.conf` for global settings, but `AllowOverride` enables web administrators to override these settings at the directory level using `.htaccess` files. This is particularly useful for shared hosting environments where users may need to man...") 태그: 시각 편집
- 2024년 11월 14일 (목) 01:37 Prairie 토론 기여님이 Apache Require 문서를 만들었습니다 (Created page with "The '''Require''' directive in Apache HTTP Server is used to control access to resources by specifying conditions that clients must meet to be granted access. The `Require` directive is commonly used for user authentication, IP-based access control, and group-based restrictions, enhancing the security and flexibility of web applications. ==Purpose of Require== The '''Require''' directive enables fine-grained access control by setting specific conditions. This can be usef...") 태그: 시각 편집
- 2024년 11월 14일 (목) 01:34 Prairie 토론 기여님이 Apache AddType 문서를 만들었습니다 (Created page with "The '''AddType''' directive in Apache HTTP Server is used to define or change the MIME (Multipurpose Internet Mail Extensions) type for specific file extensions. MIME types tell the browser how to handle files received from the server, such as rendering HTML, displaying images, or executing scripts. Setting the correct MIME type is essential for the server to communicate file handling instructions to the client. ==Purpose of AddType== The '''AddType''' directive helps in...") 태그: 시각 편집
- 2024년 11월 14일 (목) 01:12 Prairie 토론 기여님이 Apache Options MultiViews 문서를 만들었습니다 (Created page with "The '''Options Multiviews''' directive in Apache HTTP Server allows content negotiation by enabling the server to automatically select the best-matching file based on the client’s request. When enabled, the `Multiviews` option allows Apache to match and serve files with various extensions without requiring the full file name in the URL, improving flexibility in file handling and localization. ==Purpose of Options Multiviews== The '''Options Multiviews''' directive help...") 태그: 시각 편집
- 2024년 11월 14일 (목) 01:11 Prairie 토론 기여님이 Apache Options Indexes 문서를 만들었습니다 (Created page with "The '''Options Indexes''' directive in Apache HTTP Server configures the display of directory listings. When enabled, this option allows users to see a list of files in a directory if no default file (like `index.html` or `index.php`) is present. This can be useful for browsing available files, but it also presents security considerations, as it can expose sensitive information. ==Purpose of Options Indexes== The '''Options Indexes''' directive controls whether Apache wi...") 태그: 시각 편집
- 2024년 11월 13일 (수) 12:15 Prairie 토론 기여님이 TCP 왕복 시간 문서를 만들었습니다 (Created page with "'''TCP 왕복시간'''(TCP RTT: Round Trip Time)는 TCP 연결에서 패킷이 송신된 후 수신자로부터 응답(ACK)을 받는 데 걸리는 시간을 의미한다. RTT는 네트워크 지연을 측정하는 중요한 요소로, TCP가 최적의 데이터 전송 속도를 유지하고, 패킷 손실을 최소화하는 데 필수적인 정보이다. TCP RTT는 네트워크 품질, 대역폭, 지연 요소에 따라 달라지며, 이를 통해 네트워크 혼잡을...") 태그: 시각 편집
- 2024년 11월 13일 (수) 12:02 Prairie 토론 기여님이 TIME WAIT 상태 문서를 만들었습니다 (Created page with "'''Time Wait 상태'''는 TCP 연결이 종료된 후, 해당 연결의 포트 번호가 재사용되기 전까지 일정 시간 동안 유지되는 상태를 의미한다. 이 상태는 TCP/IP 프로토콜에서의 연결 종료 과정을 안전하게 마무리하고, 패킷 재전송으로 인한 문제를 방지하기 위해 사용된다. ==개요== TCP 연결은 송신자와 수신자가 모두 연결을 종료하는 과정을 거치며, 이를 통해 원활하고...") 태그: 시각 편집
- 2024년 11월 13일 (수) 11:26 Prairie 토론 기여님이 TIME WAIT state 문서를 만들었습니다 (Created page with "The '''TIME_WAIT state''' is a crucial phase in the Transmission Control Protocol (TCP) that occurs after a connection has been terminated. This state ensures that all data packets have been properly transmitted and acknowledged, preventing potential issues from delayed packets in the network. ==Purpose of TIME_WAIT== 1. '''Preventing Delayed Packet Issues''': After a connection closes, packets that were delayed in the network might still arrive. The TIME_WAIT state ensu...") 태그: 시각 편집
- 2024년 11월 13일 (수) 11:24 Prairie 토론 기여 계정이 생성되었습니다
- 2024년 11월 5일 (화) 09:10 핵톤 토론 기여님이 Missing Data 문서를 만들었습니다 (Created page with "Missing Data refers to the absence of values in a dataset, which can occur due to various reasons such as data entry errors, equipment malfunctions, or privacy concerns. Handling missing data is crucial in data science and machine learning, as it can impact the quality, accuracy, and interpretability of models. Properly addressing missing values ensures that analyses are more reliable and that models generalize well to new data. ==Types of Missing Data== There are three...") 태그: 시각 편집
- 2024년 11월 5일 (화) 09:04 핵톤 토론 기여님이 Normalization (Data Science) 문서를 만들었습니다 (Created page with "Normalization in data science is a preprocessing technique used to adjust the values of numerical features to a common scale, typically between 0 and 1 or -1 and 1. Normalization ensures that features with different ranges contribute equally to the model, improving training stability and model performance. It is especially important in machine learning algorithms that rely on distance calculations, such as k-nearest neighbors (kNN) and clustering. ==Importance of Normali...") 태그: 시각 편집
- 2024년 11월 5일 (화) 07:49 핵톤 토론 기여님이 Bias-Variance Trade-Off 문서를 만들었습니다 (Created page with "The Bias-Variance Trade-Off is a fundamental concept in machine learning that describes the balance between two sources of error that affect model performance: bias and variance. The goal is to achieve a balance between bias and variance that minimizes the model’s total error, enabling it to generalize well to new, unseen data. ==Understanding Bias and Variance== *'''Bias''': Refers to the error introduced by approximating a complex real-world problem with a simplified...") 태그: 시각 편집
- 2024년 11월 5일 (화) 07:10 핵톤 토론 기여님이 Decision Tree Prunning 문서를 만들었습니다 (Created page with "Pruning is a technique used in decision trees and machine learning to reduce the complexity of a model by removing sections of the tree that provide little predictive power. The primary goal of pruning is to prevent overfitting, ensuring that the model generalizes well to unseen data. Pruning is widely used in decision trees and ensemble methods, such as random forests, to create simpler, more interpretable models. ==Types of Pruning== There are two main types of pruning...") 태그: 시각 편집
- 2024년 11월 5일 (화) 07:05 핵톤 토론 기여님이 N-Fold Cross-Validation 문서를 만들었습니다 (Created page with "N-Fold Cross-Validation is a technique used in machine learning to evaluate a model's performance by dividing the dataset into multiple subsets, or "folds." In this method, the dataset is split into N equal parts, where the model is trained on N-1 folds and tested on the remaining fold. This process is repeated N times, each time using a different fold as the test set, and the results are averaged to obtain an overall performance estimate. N-fold cross-validation helps t...") 태그: 시각 편집
- 2024년 11월 5일 (화) 06:50 핵톤 토론 기여님이 Undersampling 문서를 만들었습니다 (Created page with "'''Undersampling is a technique used in data science and machine learning to address class imbalance by reducing the number of samples in the majority class'''. Unlike oversampling, which increases the representation of the minority class, undersampling aims to balance the dataset by removing instances from the majority class. This technique is commonly applied in scenarios where the majority class significantly outnumbers the minority class, such as fraud detection...") 태그: 시각 편집
- 2024년 11월 5일 (화) 06:47 핵톤 토론 기여님이 Oversampling 문서를 만들었습니다 (Created page with "Oversampling is a technique used in data science and machine learning to address class imbalance by increasing the number of samples in the minority class. In classification tasks with imbalanced datasets, oversampling helps to balance the distribution of classes, allowing the model to learn patterns from both majority and minority classes. Oversampling is commonly used in applications such as fraud detection, medical diagnosis, and other areas where certain classes are...") 태그: 시각 편집
- 2024년 11월 5일 (화) 06:42 핵톤 토론 기여님이 Stratified Sampling 문서를 만들었습니다 (Created page with "Stratified Sampling is a sampling technique used to ensure that subsets of data (called “strata”) maintain the same distribution of key characteristics as the original dataset. In data science and machine learning, stratified sampling is often used to create training, validation, and test splits, particularly when dealing with imbalanced datasets. This method ensures that each subset is representative of the entire dataset, improving the model's ability to generalize...") 태그: 시각 편집
- 2024년 11월 5일 (화) 06:36 핵톤 토론 기여님이 Data Partition 문서를 만들었습니다 (Created page with "'''Data Partition is a process in data science and machine learning where a dataset is divided into separate subsets to train, validate, and test a model'''. Data partitioning ensures that the model is evaluated on data it has not seen before, helping prevent overfitting and ensuring that it generalizes well to new data. Common partitions include training, validation, and test sets, each serving a specific purpose in the model development process. ==Types of Data Partiti...") 태그: 시각 편집
- 2024년 11월 5일 (화) 06:27 핵톤 토론 기여님이 특수:Badtitle/NS102:CRISP-DM 문서를 만들었습니다 (Created page with "The Cross-Industry Standard Process for Data Mining (CRISP-DM) is a widely adopted methodology for data mining and analytics projects. Developed in the 1990s, CRISP-DM provides a structured, six-phase approach to guide data scientists and analysts through the process of developing and deploying data mining models. It is industry-agnostic, making it applicable to various fields and data science projects. == Phases of CRISP-DM == CRISP-DM consists of six main phases, each...")
- 2024년 11월 5일 (화) 06:27 핵톤 토론 기여님이 특수:Badtitle/NS100:CRISP-DM 문서를 만들었습니다 (Created page with "분류:데이터 과학 ;데이터 마이닝 기업들이 모여서 공동으로 제정한, 초보자나 전문가가 비즈니스 전문가와 함께 모형을 만들어 내는 포괄적인 방법론이며 어떤 산업 분야에도 적용할 수 있는 표준적 데이터마이닝 프로세스 == 절차 == 파일:CRISP-DM 절차도.png {| class="wikitable" ! ! 절차 ! 세부 활동 ! 비고 |- | ① | Business Understanding | 업무 목표 수립, 현...")
- 2024년 11월 5일 (화) 06:16 핵톤 토론 기여님이 Feature Selection 문서를 만들었습니다 (Created page with "'''Feature Selection is a process in machine learning and data science that involves identifying and selecting the most relevant features (or variables) in a dataset to improve model performance, reduce overfitting, and decrease computational cost'''. By removing irrelevant or redundant features, feature selection simplifies the model, enhances interpretability, and often improves accuracy. ==Importance of Feature Selection== Feature selection is a crucial step in the mo...") 태그: 시각 편집
- 2024년 11월 5일 (화) 06:06 핵톤 토론 기여님이 Gini Impurity 문서를 만들었습니다 (Redirected page to Gini Impurity (Data Science)) 태그: 새 넘겨주기 시각 편집
- 2024년 11월 5일 (화) 06:06 핵톤 토론 기여님이 Information Gain 문서를 만들었습니다 (Created page with "Information Gain is a metric used in machine learning to measure the effectiveness of a feature in classifying data. It quantifies the reduction in entropy (impurity) achieved by splitting a dataset based on a particular feature. Information gain is widely used in decision tree algorithms to select the best feature for each node split, maximizing the model’s predictive accuracy. ==Definition of Information Gain== Information gain is defined as the difference in entropy...") 태그: 시각 편집
- 2024년 11월 5일 (화) 06:04 핵톤 토론 기여님이 Impurity (Data Science) 문서를 만들었습니다 (Created page with "In data science, impurity refers to the degree of heterogeneity in a dataset, specifically within a group of data points. Impurity is commonly used in decision trees to measure how "mixed" the classes are within each node or split. A high impurity indicates a mix of different classes, while a low impurity suggests that the data is homogenous or predominantly from a single class. Impurity measures guide the decision tree-building process by helping identify the best featu...") 태그: 시각 편집
- 2024년 11월 5일 (화) 05:58 핵톤 토론 기여님이 Entropy 문서를 만들었습니다 (Redirected page to Entropy (Data Science)) 태그: 새 넘겨주기 시각 편집
- 2024년 11월 5일 (화) 05:54 핵톤 토론 기여님이 Clustering Algorithm 문서를 만들었습니다 (Created page with "Clustering algorithms are a type of unsupervised learning technique used to group similar data points together based on their features. Unlike classification, clustering does not require labeled data, as the goal is to discover inherent structures within the data. Clustering is widely applied in data exploration, customer segmentation, image processing, and anomaly detection. ==Types of Clustering Algorithms== Several types of clustering algorithms are commonly used, eac...") 태그: 시각 편집
- 2024년 11월 5일 (화) 05:52 핵톤 토론 기여님이 Clustering 문서를 만들었습니다 (Redirected page to Clustering Algorithm) 태그: 새 넘겨주기 시각 편집
- 2024년 11월 5일 (화) 05:52 핵톤 토론 기여님이 Classification 문서를 만들었습니다 (Redirected page to Classification Algorithm) 태그: 새 넘겨주기 시각 편집
- 2024년 11월 5일 (화) 05:50 핵톤 토론 기여님이 Gradient Descent 문서를 만들었습니다 (Created page with "'''Gradient Descent''' is an optimization algorithm used to minimize a function by iteratively moving toward the function's minimum. In machine learning, gradient descent is commonly used to minimize the loss function, adjusting model parameters (weights and biases) to improve the model's performance. The algorithm calculates the gradient of the loss function with respect to each parameter and updates the parameters in the opposite direction of the gradient to reduce err...") 태그: 시각 편집
- 2024년 11월 5일 (화) 05:46 핵톤 토론 기여님이 Deep Neural Network 문서를 만들었습니다 (Created page with "A Deep Neural Network (DNN) is an artificial neural network with multiple hidden layers between the input and output layers. This deep structure allows the model to learn complex, hierarchical patterns in data by progressively extracting higher-level features from raw inputs. DNNs are foundational to deep learning and have achieved state-of-the-art results in various applications, including image recognition, natural language processing, and robotics. ==Structure of a De...") 태그: 시각 편집
- 2024년 11월 5일 (화) 05:43 핵톤 토론 기여님이 Multi-Layer Perceptron 문서를 만들었습니다 (Created page with "A Multi-Layer Perceptron (MLP) is a type of artificial neural network with multiple layers of neurons, including one or more hidden layers between the input and output layers. Unlike single-layer '''perceptrons''', which can only solve linearly separable problems, MLPs can model complex, non-linear relationships, making them suitable for a wide range of machine learning tasks. ==Structure of a Multi-Layer Perceptron== An MLP consists of three main types of...") 태그: 시각 편집
- 2024년 11월 5일 (화) 05:36 핵톤 토론 기여님이 Perceptron 문서를 만들었습니다 (Created page with "The Perceptron is a type of artificial neuron and one of the simplest models in machine learning, used for binary classification tasks. It is a linear classifier that learns to separate data into two classes by finding an optimal hyperplane. Originally developed in the 1950s, the perceptron laid the foundation for more complex neural network architectures. ==Structure of a Perceptron== A perceptron consists of several key components: *'''Inputs''': The feature values fro...") 태그: 시각 편집
- 2024년 11월 5일 (화) 05:32 핵톤 토론 기여님이 Neural Network 문서를 만들었습니다 (Created page with "A Neural Network is a machine learning model inspired by the structure and functioning of the human brain. Neural networks consist of layers of interconnected nodes, or "neurons," which process data and learn patterns through weighted connections. Neural networks are foundational to deep learning and are used extensively in complex tasks such as image and speech recognition, natural language processing, and robotics. ==Structure of a Neural Network== A typical neural net...") 태그: 시각 편집
- 2024년 11월 5일 (화) 05:29 핵톤 토론 기여님이 Machine Learning 문서를 만들었습니다 (Created page with "'''Machine Learning''' is a branch of artificial intelligence (AI) that focuses on building systems that can learn from data, identify patterns, and make decisions with minimal human intervention. By training algorithms on datasets, machine learning enables computers to make predictions, classify data, and detect insights automatically. ==Types of Machine Learning== Machine learning is typically categorized into several types based on the way models learn from data: *'''...") 태그: 시각 편집
- 2024년 11월 5일 (화) 02:54 핵톤 토론 기여님이 Deep Learning 문서를 만들었습니다 (Created page with "Deep Learning is a subset of machine learning focused on using neural networks with multiple layers to model complex patterns in large datasets. By learning hierarchies of features directly from data, deep learning can automatically extract representations that are often difficult to engineer manually. It is widely used in applications such as image recognition, natural language processing, and autonomous driving. ==Key Concepts in Deep Learning== Deep learning involves...") 태그: 시각 편집
- 2024년 11월 5일 (화) 02:53 핵톤 토론 기여님이 Similarity (Data Science) 문서를 만들었습니다 (Created page with "In data science, similarity refers to a measure of how alike two data points, items, or sets of features are. It is a fundamental concept in various machine learning and data analysis tasks, particularly in clustering, recommendation systems, and classification. Similarity metrics quantify the closeness or resemblance between data points, enabling models to group, rank, or classify them based on shared characteristics. ==Key Similarity Measures== Several similarity metri...") 태그: 시각 편집
- 2024년 11월 5일 (화) 02:28 핵톤 토론 기여님이 Cross-Validation 문서를 만들었습니다 (Created page with "Cross-Validation is a technique in machine learning used to evaluate a model’s performance on unseen data. It involves partitioning the dataset into multiple subsets, training the model on some subsets while testing on others. Cross-validation helps detect overfitting and underfitting, ensuring the model generalizes well to new data. ==Key Concepts in Cross-Validation== Cross-validation is based on the following key principles: *'''Training and Validation Splits''': Cr...") 태그: 시각 편집
- 2024년 11월 5일 (화) 02:26 핵톤 토론 기여님이 Underfitting 문서를 만들었습니다 (Created page with "Underfitting is a common issue in machine learning where a model is too simple to capture the underlying patterns in the data. As a result, the model performs poorly on both training and test datasets, failing to achieve high accuracy. Underfitting occurs when the model lacks the capacity or complexity needed to represent the relationships within the data. ==Causes of Underfitting== Several factors contribute to underfitting in machine learning models: *'''Over-Simplifie...") 태그: 시각 편집