데이터 분할
IT 위키
- 한정된 데이터를 학습용 데이터, 검증용 데이터, 평가용 데이터 등으로 분할하여 사용하는 기법
데이터 분할 이유[편집 | 원본 편집]
데이터 분석 모형이 주어진 데이터에 대해서만 높은 성능을 보이는 문제를 방지하기 위해 일부 데이터로 학습을 시키고 일부 데이터로 검증을 수행한다.
데이터 분할 방법[편집 | 원본 편집]
분할 데이터 구성[편집 | 원본 편집]
학습용, 평가용으로만 나누기도 하고 학습용, 검증용, 평가용으로 나누기도 한다.
- 학습용 데이터(Training Set): 데이터를 학습하여 분석 모형을 만드는데 직접적으로 활용되는 데이터
- 검증용 데이터(Validation Set): 과적합, 부적합 등 모형의 성능을 개선시키기 위한 데이터
- 평가용 데이터(Test Set): 모델 성능 개선 및 적합성 검증용 데이터
- 검증 세트(Validation)와 비슷하지만, 모델을 구축하거나 튜닝할 때 포함된 적 없다는 점에서 차이
고려사항[편집 | 원본 편집]
- 데이터의 대표성: 학습용 데이터와 평가용 데이터은 전체 데이터에 대한 대표성을 가져야 함
- 시간의 방향성: 과거 데이터로부터 미래 데이터를 예측하고자 할 경우에는 데이터를 섞을 수 없음
- 학습용 데이터에 있는 데이터보다 평가용 데이터의 모든 데이터가 미래의 것으로 구성
- 데이터 중복 : 각 훈련, 검증, 평가 데이터셋에는 데이터 포인트의 중복이 없도록 구성
데이터 분할 비율[편집 | 원본 편집]
- 일반적으로 학습용:검증용:평가용 = 5:3:2 비율 많이 사용(정해진 기준 없음)
- 학습용과 검증용은 학습 과정에서 사용하며 평가용은 학습 과정에서 사용하지 않음
모형 선정 과정[편집 | 원본 편집]
모형 선정의 첫번째 과정으로 데이터 분할이 사용된다.
- 1. 데이터 분할
- 2. 분석 모형 학습
- 3. 분석 모형 검증
- 4. 분석 모형 선택
- 5. 분석 모형 전개
- 6. 분석 모형 모니터링
- 7. 분석 모형 리모델링