가리키는 글의 최근 바뀜
IT 위키
해당 문서에 연결된 문서의 변경사항을 확인하려면 문서 이름을 입력하십시오. (분류에 들어있는 문서를 보려면 분류:분류명으로 입력하십시오). 내 주시문서 목록에 있는 문서의 변경사항은 굵게 나타납니다.
약어 목록:
- 새글
- 새 문서 (새 문서 목록도 보세요)
- 잔글
- 사소한 편집
- 봇
- 봇이 수행한 편집
- (±123)
- 바이트 수로 표현한 문서 크기의 차이
2025년 10월 25일 (토)
| 새글 05:38 | EfficientNet 차이역사 +4,216 인공무능 토론 기여 (새 문서: EfficientNet(영어: EfficientNet)은 컨볼루션 신경망(CNN) 아키텍처의 효율적인 확장을 위한 모델 계열로, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks” 논문에서 제안되었다. ==개요== EfficientNet은 네트워크의 깊이(depth), 폭(width), 입력 해상도(resolution)를 균형 있게 확장하는 '''복합 계수(compound coefficient)''' 기반 스케일링 기법을 도입하였다. 기존 모델들은 깊이...) | ||||
| 새글 05:29 | ShuffleNet 차이역사 +4,678 인공무능 토론 기여 (새 문서: ShuffleNet(영어: ShuffleNet)은 모바일 및 임베디드 디바이스 환경에서 매우 제한된 연산 자원 하에서도 고성능 이미지 인식이 가능하도록 설계된 경량 컨볼루션 신경망(CNN) 아키텍처이다. ==개요== ShuffleNet은 연산량이 극히 적은 환경(수십 MFLOPs 수준)에서도 동작하도록 설계되었다. 핵심은 두 가지 연산 기법인 포인트와이즈 그룹 컨볼루션(pointwise group convolution)과 채널...) | ||||
| 새글 05:23 | MobileNet 차이역사 +4,623 인공무능 토론 기여 (새 문서: MobileNet(영어: MobileNet)은 모바일 및 임베디드 디바이스 환경에서 낮은 지연(latency)과 적은 연산량으로 이미지 인식, 객체 검출 등의 컴퓨터 비전 과제를 수행하도록 설계된 경량 컨볼루션 신경망(CNN) 아키텍처 계열이다. ==개요== MobileNet은 일반적인 컨볼루션 연산을 깊이별 분리된 컨볼루션(depthwise separable convolution) 방식으로 대체하여 연산량과 파라미터 수를 크게 줄...) | ||||
| 05:18 | ResNet 차이역사 +17 인공무능 토론 기여 | ||||
| 새글 05:11 | AlexNet 차이역사 +4,668 인공무능 토론 기여 (새 문서: AlexNet(영어: AlexNet)은 2012년 ImageNet 대회(ILSVRC 2012)에서 우승하며 딥러닝 기반 이미지 인식의 시대를 연 컨볼루션 신경망(CNN) 모델이다. 토론토 대학교의 알렉스 크리제브스키(Alex Krizhevsky), 일야 서츠케버(Ilya Sutskever), 제프리 힌턴(Geoffrey Hinton)에 의해 개발되었다. ==개요== AlexNet은 대규모 이미지 데이터셋(ImageNet)을 학습하여 객체 분류 문제를 해결한 모델로, 당시 기...) | ||||