새 문서 목록

IT 위키
새 문서 목록
등록된 사용자 숨기기 | 봇 숨기기 | 넘겨주기를 보이기
(최신 | 오래됨) ( | ) (20 | 50 | 100 | 250 | 500) 보기
  • 2024년 11월 4일 (월) 14:11Specificity (Data Science) (역사 | 편집) ‎[2,246 바이트]핵톤 (토론 | 기여) (Created page with "'''Specificity''', also known as the '''True Negative Rate (TNR)''', is a metric used in binary classification to measure the proportion of actual negative cases that are correctly identified by the model. It reflects the model’s ability to avoid false positives and accurately classify negative instances. ==Definition== Specificity is calculated as: :'''<big>Specificity = True Negatives / (True Negatives + False Positives)</big>''' A higher specificity value indicates...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 13:57False Positive Rate (역사 | 편집) ‎[2,077 바이트]핵톤 (토론 | 기여) (Created page with "The '''False Positive Rate (FPR)''' is a metric used in binary classification to measure the proportion of actual negatives that are incorrectly identified as positives by the model. It is an important metric for understanding the model's tendency to produce false alarms. ==Definition== The False Positive Rate is calculated as: :'''FPR = False Positives / (False Positives + True Negatives)''' This metric represents the likelihood of a negative instance being misclassifie...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 12:15Area Under the Curve (역사 | 편집) ‎[2,354 바이트]핵톤 (토론 | 기여) (Created page with "The Area Under the Curve (AUC) is a metric used in classification tasks to evaluate the overall performance of a binary classification model. It represents the area under the ROC (Receiver Operating Characteristic) Curve, providing a single value that summarizes the model’s ability to distinguish between positive and negative classes across all thresholds. ==Definition== AUC values range from 0 to 1: *'''AUC = 1''': Indicates a perfect classifier that co...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 12:13ROC Curve (역사 | 편집) ‎[2,501 바이트]핵톤 (토론 | 기여) (Created page with "The '''ROC (Receiver Operating Characteristic) Curve''' is a graphical representation used to evaluate the performance of a binary classification model. It plots the true positive rate (sensitivity) against the false positive rate (1 - specificity) at various threshold settings, providing insight into the trade-offs between sensitivity and specificity. ==Definition== The ROC Curve is created by plotting: *'''True Positive Rate (TPR)''' or Sensitivity: TPR = True Positive...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 12:05Classification Metrics (역사 | 편집) ‎[3,024 바이트]핵톤 (토론 | 기여) (Created page with "'''Classification metrics''' are evaluation measures used to assess the performance of classification models in machine learning and data science. These metrics help determine how well a model can predict the correct class labels, particularly in supervised learning tasks. ==Common Classification Metrics== There are several widely used classification metrics, each serving different aspects of model performance: *'''Accuracy''': Measures the ratio of correct predictions t...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 12:03Confusion Matrix (역사 | 편집) ‎[2,343 바이트]핵톤 (토론 | 기여) (Created page with "'''Confusion Matrix''' is a tool used in data science and machine learning to evaluate the performance of a classification model. It provides a tabular summary of the model's predictions against the actual values, breaking down the number of correct and incorrect predictions for each class. ==Structure== The confusion matrix is typically a 2x2 table for binary classification, with the following layout: *'''True Positives (TP)''': Correctly predicted positive instances *...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:59Recall (Data Science) (역사 | 편집) ‎[2,267 바이트]핵톤 (토론 | 기여) (Created page with "'''Recall''' is a metric used in data science, particularly in classification problems, to measure the completeness of positive predictions. It represents the ratio of true positive predictions to the sum of true positives and false negatives, reflecting the model's ability to identify all relevant instances within the data. ==Definition== Recall is calculated as: :'''Recall = True Positives / (True Positives + False Negatives)''' This metric is crucial when the focus is...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:58Precision (Data Science) (역사 | 편집) ‎[2,396 바이트]핵톤 (토론 | 기여) (Created page with "'''Precision''' is a metric used in data science, particularly in classification problems, to measure the accuracy of positive predictions. It is defined as the ratio of true positive predictions to the sum of true positive and false positive predictions, offering insights into the model's performance in correctly identifying positive instances. ==Definition== Precision is calculated as: :'''<big>Precision = True Positives / (True Positives + False Positives)</big>''' Th...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:55Accuracy (Data Science) (역사 | 편집) ‎[2,174 바이트]핵톤 (토론 | 기여) (Created page with "Accuracy is a metric used in data science to measure the performance of a model, particularly in classification problems. It represents the ratio of correctly predicted instances to the total number of instances. ==Definition== Accuracy is calculated as: :'''<big>Accuracy = (True Positives + True Negatives) / (Total Number of Instances)</big>''' This metric is often used in classification problems, where the goal is to determine how well a model can predict class labels....") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:51Gini Impurity (Data Science) (역사 | 편집) ‎[2,355 바이트]핵톤 (토론 | 기여) (Created page with "'''Gini Impurity''' is a metric used in data science, particularly in decision tree algorithms, to measure the "impurity" or diversity of a dataset. It helps in determining how well a split at a node separates the data into distinct classes, making it essential for classification problems. ==Definition== Gini impurity calculates the probability that a randomly chosen element from a dataset will be incorrectly classified if it is randomly labeled accordi...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:46Entropy (Data Science) (역사 | 편집) ‎[5,845 바이트]핵톤 (토론 | 기여) (Created page with "'''Entropy (Data Science)''' In '''Data Science''', '''Entropy''' is a measure of randomness or uncertainty in a dataset. Often used in Decision Trees and other machine learning algorithms, entropy quantifies the impurity or unpredictability of information in a set of data. In classification tasks, entropy helps determine the best way to split data to reduce uncertainty and increase homogeneity in the resulting subsets. ==How Entropy Works== Entropy, denoted as H, is ca...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:43Decision Tree (역사 | 편집) ‎[3,463 바이트]핵톤 (토론 | 기여) (Created page with "'''Decision Tree''' A '''Decision Tree''' is a supervised learning algorithm used for both classification and regression tasks. It structures decisions as a tree-like model, where each internal node represents a test on a feature, each branch represents an outcome of that test, and each leaf node represents a class label or prediction. Decision Trees are highly interpretable and can work with both categorical and numerical data, making them widely applicable across vari...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:39Random Forest (역사 | 편집) ‎[3,898 바이트]핵톤 (토론 | 기여) (Created page with "'''Random Forest''' is an ensemble learning method that combines multiple Decision Trees to improve classification or regression accuracy. It is designed to mitigate the limitations of single Decision Trees, such as overfitting and sensitivity to data variations, by building a "forest" of trees and aggregating their predictions. This approach often leads to greater model stability and accuracy. ==How It Works== Random Forest creates multiple Decision Trees during trainin...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:33Logistic Regression (역사 | 편집) ‎[3,911 바이트]핵톤 (토론 | 기여) (Created page with "'''Logistic regression''' is a statistical and machine learning algorithm used for binary classification tasks, where the output variable is categorical and typically represents two classes (e.g., yes/no, spam/not spam, fraud/not fraud). Despite its name, Logistic Regression is a classification algorithm, not a regression algorithm, as it predicts probabilities of classes rather than continuous values. ==How It Works== Logistic Regression models the probability of a bin...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:29Support Vector Machine (역사 | 편집) ‎[4,232 바이트]핵톤 (토론 | 기여) (Created page with "'''Support Vector Machine (SVM)''' is a powerful supervised machine learning algorithm used for both classification and regression tasks, though it is primarily used in classification. SVM works by finding the optimal boundary, or hyperplane, that best separates the data points of different classes. SVM is effective in high-dimensional spaces and is especially suitable for binary classification problems. ==How It Works== SVM aims to maximize the margin between data point...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:18Independence (Linear Regression) (역사 | 편집) ‎[2,421 바이트]핵톤 (토론 | 기여) (Created page with "In the context of '''Linear Regression''', '''independence''' refers to the assumption that each observation in the dataset is independent of the others. This assumption is crucial for producing unbiased estimates and valid predictions. When observations are independent, it implies that the value of one observation does not influence or provide information about another observation. ==Importance of the Independence Assumption== Independence is a foundational assumption f...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:15Linear Regression (역사 | 편집) ‎[3,427 바이트]핵톤 (토론 | 기여) (Created page with "'''Linear Regression''' is a fundamental regression algorithm used in machine learning and statistics to model the relationship between a dependent variable and one or more independent variables. It assumes a linear relationship between the variables, which means the change in the dependent variable is proportional to the change in the independent variables. Linear Regression is commonly used for predictive analysis and trend forecasting. ==Types of Linear Regression== T...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:08Discrete (역사 | 편집) ‎[2,011 바이트]핵톤 (토론 | 기여) (Created page with "In mathematics and computer science, '''discrete''' refers to distinct, separate values or entities, as opposed to continuous values. Discrete data or structures consist of isolated points or categories, often represented by integers or categorical labels. In contrast, continuous data have values that fall within a range and can take on any value within that interval. ==Examples of Discrete Data== Discrete data is commonly found in many fields and applications: *'''Count...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:05Classification Algorithm (역사 | 편집) ‎[4,578 바이트]핵톤 (토론 | 기여) (Created page with "'''Classification algorithms''' are a group of machine learning methods used to categorize data into discrete classes or labels. These algorithms learn from labeled data during training and make predictions by assigning an input to one of several possible categories. Classification is widely applied in areas like image recognition, spam filtering, and medical diagnosis. ==Types of Classification Algorithms== There are various types of classification algorithms, each with...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 11:00Regression Algorithm (역사 | 편집) ‎[4,309 바이트]핵톤 (토론 | 기여) (Created page with "'''Regression algorithms''' are a family of machine learning methods used for predicting continuous numerical values based on input features. Unlike classification, which predicts discrete classes, regression predicts outputs that can take any real number value. Regression algorithms are widely used in various fields, such as finance, economics, and environmental science, where predicting quantities (like stock prices, sales, or temperatures) is essential. ==Types of Reg...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 10:57K-Nearest Neighbor (역사 | 편집) ‎[3,441 바이트]핵톤 (토론 | 기여) (Created page with "'''K-Nearest Neighbo'''r, often abbreviated as '''K-NN''', is a simple and intuitive classification and regression algorithm used in supervised machine learning. It classifies new data points based on the majority class among its nearest neighbors in the feature space. K-NN is a non-parametric algorithm, meaning it makes no assumptions about the underlying data distribution, making it v...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 10:46Data Science (역사 | 편집) ‎[3,661 바이트]핵톤 (토론 | 기여) (Created page with "Data Science is an interdisciplinary field that uses scientific methods, algorithms, and systems to extract knowledge and insights from both structured and unstructured data. It combines elements of statistics, computer science, and domain expertise to analyze complex data and derive actionable conclusions. The goal of Data Science is often to make data-driven decisions, predict trends, and provide meaningful insights that can guide business and research. ==Key Component...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 10:44Bayes' Theorem (역사 | 편집) ‎[1,003 바이트]핵톤 (토론 | 기여) (Created page with "'''Bayes' theorem''' is a fundamental principle in probability theory and statistics, which describes how to update the probability of a hypothesis based on new evidence. It provides a mathematical framework for reasoning under uncertainty and is often used in machine learning, especially in algorithms like Naive Bayes. The theorem is expressed as: P(A | B) = (P(B | A) * P(A)) / P(B) where: *'''P(A | B)''' is the posterior probability: the probability of event A occur...") 태그: 시각 편집
  • 2024년 11월 4일 (월) 10:38Naive Bayes (역사 | 편집) ‎[2,165 바이트]핵톤 (토론 | 기여) (Created page with "**Naive Bayes** The '''Naive Bayes''' algorithm is a probability-based classification method that calculates the likelihood of data belonging to a specific class by using conditional probabilities. As suggested by the term "naive," this algorithm assumes that each feature is independent of the others. While this assumption is often unrealistic, Naive Bayes proves to be practical and efficient in classification tasks, providing good performance on real-world data. Naive...")
  • 2024년 11월 3일 (일) 00:18Main Page (역사 | 편집) ‎[1,968 바이트]Itwiki (토론 | 기여) (Created page with "This wiki is primarily in Korean and intended for Korean users. Some documents are available in English. If you search in English and are redirected to a Korean page, it means that the document is only available in Korean. However, users from English-speaking countries are also welcome to contribute freely to this wiki.") 태그: 시각 편집
  • 2024년 11월 3일 (일) 00:16Model Interpretability (역사 | 편집) ‎[2,575 바이트]핵톤 (토론 | 기여) (새 문서: '''Model interpretability''' is the ability to understand or explain how a model performs predictions. It indicates whether a model’s decisions can be explained to humans and how well the reasoning behind them can be communicated. == Interpretability by Model Type == The following list generally starts with models that are considered to have higher interpretability. === Linear Regression === * A simple mathematical model that assigns linear coefficients to each feature,...) 태그: 시각 편집
  • 2024년 11월 3일 (일) 00:05모델 해석 가능성 (역사 | 편집) ‎[2,903 바이트]핵톤 (토론 | 기여) (새 문서: Model Interpretability 모델 해석 가능성은 인공지능이나 기계 학습 모델이 예측을 어떻게 수행하는지 이해하거나 설명할 수 있는 능력을 의미한다. 이는 모델이 내리는 결정을 사람에게 설명할 수 있는지, 또 그 이유를 얼마나 잘 전달할 수 있는지를 나타낸. == 모델별 해석 가능성 == 아래 목록은 일반적으로 해석 가능성이 높은 모델을 우선적으로 작성한 내용이다....)
  • 2024년 11월 2일 (토) 06:10CRUD (역사 | 편집) ‎[1,839 바이트]핵톤 (토론 | 기여) (새 문서: CRUD는 '''Create, Read, Update, Delete'''의 약자로, 데이터베이스 관리 및 애플리케이션 개발에서 필수적인 네 가지 기본 작업을 의미한다. == 구성 == # '''Create (생성)''': 데이터베이스에 새로운 데이터를 추가하는 작업이다. #* 예를 들어, 사용자 계정 생성, 주문 등록, 제품 추가 등이 포함될 수 있다. # '''Read (읽기)''': 기존 데이터를 조회하거나 보는 작업이다. #* 예를 들...) 태그: 시각 편집
  • 2024년 10월 31일 (목) 01:25의대 계약정원제 (역사 | 편집) ‎[4,446 바이트]172.70.114.223 (토론) (새 문서: 의대 계약정원제는 지방 의대생 일부를 지역 공공병원에서 일정 기간 이상 의무적으로 근무하는 조건으로 선발하도록 하는 제도이다. == 취지 == 이는 지방 의료 인력의 수도권 유출을 막고 의료 공백을 해소할 수 있다. 현재 의사들이 지방에선 거의 근무하지 않으려고 하기 때문에 지방의 필수 의료 인력 부족으로 주민들(주로 노령층)이 아파도 치료를 받지 못하...) 태그: 시각 편집
  • 2024년 10월 29일 (화) 07:00나이브 베이즈 (역사 | 편집) ‎[2,556 바이트]핵톤 (토론 | 기여) (새 문서: Naive Bayes '''나이브 베이즈'''는 확률에 기반한 분류 알고리즘으로, 조건부 확률을 활용하여 데이터가 특정 클래스에 속할 확률을 계산한다. 이 알고리즘은 '나이브(naive)'라는 이름에서 알 수 있듯이, 각 독립 변수가 서로 독립적이라는 가정을 한다. 이러한 가정은 현실에서는 성립하지 않는 경우가 많지만, 나이브 베이즈는 실제 데이터에서 실용적이고 빠른 분류...) 태그: 시각 편집
  • 2024년 10월 29일 (화) 05:30캘리브레이션 플롯 (역사 | 편집) ‎[1,227 바이트]핵톤 (토론 | 기여) (새 문서: '''Calibration plot''' 캘리브레이션 플롯은 머신 러닝 등의 예측 모델에서 예측 확률이 실제 결과와 얼마나 잘 일치하는지를 평가하기 위해 사용되는 도구이다. 특히 '''확률적 예측 모델'''에서 유용하며, 분류 모델의 신뢰도를 평가하는 데 자주 활용된다. == Calibration Plot의 구성 == * '''X축''': 모델의 예측 확률 (예: 0.0에서 1.0 사이의 값) * '''Y축''': 실제 관찰된 빈도(또...) 태그: 시각 편집
  • 2024년 10월 25일 (금) 02:32포워드 DNS (역사 | 편집) ‎[7,049 바이트]파네라 (토론 | 기여) (새 문서: '''Forward DNS''' '''포워드 DNS'''는 도메인 이름을 '''IP 주소로 변환'''하는 과정을 의미한다. 즉, 사용자가 웹 브라우저에서 도메인 이름(예: www.example.com)을 입력하면, 포워드 DNS 조회를 통해 해당 도메인의 IP 주소를 찾아내는 방식이다. DNS 리졸버를 이용하는 과정이라고 할 수 있다. '''포워드 DNS의 예시''' * 사용자가 www.example.com에 접속하려고 할 때, 포워드 DNS 조회...) 태그: 시각 편집
  • 2024년 10월 25일 (금) 01:58DNS 리졸버 (역사 | 편집) ‎[3,434 바이트]파네라 (토론 | 기여) (새 문서: '''DNS Resolver''' '''DNS 리졸버'''는 사용자가 도메인 이름을 입력하면 해당 도메인에 대한 '''IP 주소'''를 찾아주는 클라이언트 측 구성 요소이다. DNS 리졸버는 '''도메인 네임 시스템(DNS)'''의 중요한 부분으로, 사용자가 웹사이트에 접근할 수 있도록 도메인 이름과 IP 주소 간의 매핑을 처리한다. DNS 리졸버는 사용자와 DNS 서버 사이의 중개 역할을...) 태그: 시각 편집
  • 2024년 10월 25일 (금) 01:51지속적 연결 (역사 | 편집) ‎[5,754 바이트]파네라 (토론 | 기여) (새 문서: * '''상위 문서: HTTP''' '''Persistent Connection'''지속적 연결은 '''HTTP/1.1'''에서 도입된 기술로, 한 번 설정된 TCP 연결을 여러 요청에 걸쳐 유지하는 방식이다. 이를 통해 각 요청마다 새로운 연결을 설정하고 종료하는 과정을 반복하는 대신, '''하나의 연결을 여러 리소스 요청에 사용'''하여 효율성을 높일 수 있다. == HTTP/1.0와의 가장 큰 차이 == * '''HTTP/1.0''':...) 태그: 시각 편집
  • 2024년 10월 25일 (금) 01:13토큰 링 (역사 | 편집) ‎[1,581 바이트]파네라 (토론 | 기여) (새 문서: '''Token Ring''' 토큰링은 컴퓨터 네트워크에서 사용되는 통신 프로토콜 중 하나로, 네트워크의 모든 장치가 링(ring) 형태로 연결된 구조에서 데이터를 전송하는 방식이다. 이 프로토콜에서는 '''토큰'''이라는 특별한 데이터 패킷이 네트워크를 순환하면서 통신을 제어한다. == 주요 특징 == * '''토큰 기반 전송''': 네트워크에서 데이터를 전송하기 위해서는 해당 장치...) 태그: 시각 편집
  • 2024년 10월 25일 (금) 01:06동기식 시분할 다중화 (역사 | 편집) ‎[1,844 바이트]파네라 (토론 | 기여) (새 문서: '''Synchronous Time Division Multiplexing, STDM''' '''동기식 시분할 다중화'''는 여러 신호를 하나의 통신 채널에서 시간 단위로 나누어 전송하는 방식이다. 여기서 '동기식'이라는 의미는, 각 신호(혹은 사용자)에게 미리 정해진 고정된 시간 슬롯이 주어진다는 것이다. 이 방식에서는 모든 신호가 자신만의 시간 슬롯을 가지고, 주어진 시간에만 데이터를 전송한다. == 주요 특...) 태그: 시각 편집
  • 2024년 10월 25일 (금) 01:02도메인 네임 시스템 (역사 | 편집) ‎[1,981 바이트]파네라 (토론 | 기여) (새 문서: 분류:보안 분류:정보보안기사 분류:정보처리기사 분류:네트워크 ;Domain Name System 도메인 이름이 IP 주소로 상호 변환되는 시스템 *숫자로 이루어진 인터넷 주소를 사용자의 이해와 기억을 돕기 위해 이름과 위치 등을 나타내는 일련의 단어로 변환하는 구조 *공대위키는 115.71.236.146 이라는 주소를 가진 서버지만, 외우기 힘드므로 itwiki.kr이라는 도메인을...)
  • 2024년 10월 25일 (금) 00:59네임 서버 (역사 | 편집) ‎[1,176 바이트]파네라 (토론 | 기여) (새 문서: '''Name Server''' 네임 서버는 '''도메인 네임 시스템(DNS)'''의 중요한 구성 요소로, 도메인 이름을 해당 IP 주소로 변환하는 역할을 한다. 인터넷 상에서 모든 기기나 서버는 IP 주소를 통해 서로 통신하지만, 사람이 숫자로 이루어진 IP 주소를 기억하기 어려워서 도메인 이름을 사용하게 된다. 네임 서버는 이러한 도메인 이름과 IP 주소 간의 매핑...) 태그: 시각 편집
  • 2024년 10월 24일 (목) 11:38모바일 IP (역사 | 편집) ‎[2,710 바이트]파네라 (토론 | 기여) (새 문서: '''모바일 IP'''는 '''IETF'''에 의해 개발된 프로토콜로, 장치가 네트워크를 이동할 때도 원래의 홈 주소(Home Address)를 유지하며 통신할 수 있도록하는 시스템이다. * 기존 IP 시스템에서는 네트워크 변경 시 새로운 IP 주소를 할당받아 기존 연결이 끊어지지만, 모바일 IP는 이를 해결하여 네트워크 이동성(Mobility)을 보장한다. 주로 무선 네트워크 환경에서 장치 이동 중에...) 태그: 시각 편집
  • 2024년 10월 24일 (목) 11:34CoA (역사 | 편집) ‎[2,273 바이트]파네라 (토론 | 기여) (새 문서: * 상위 개념: '''모바일 IP''' '''Care of Address, CoA'''<ref>한국어 표현이 별도로 없으므로, 일반적으로 불리는 영어 약어를 대표명으로 함</ref> CoA는 모바일 IP(Mobile IP)에서 사용자가 원래 네트워크를 벗어나 새로운 네트워크에 접속했을 때, 해당 네트워크에서 임시로 할당받는 IP 주소이다. 모바일 IP에서 중요한 개념으로, 이동 중인 장치가 네트워크를 변경해도 지...) 태그: 시각 편집
  • 2024년 10월 24일 (목) 10:09왈시 코드 (역사 | 편집) ‎[3,920 바이트]파네라 (토론 | 기여) (새 문서: '''Walsh Code''' 왈시 코드는 CDMA에서 사용되는 직교 코드 중 하나로, 서로 다른 사용자 간의 신호 간섭을 방지하기 위해 사용된다. CDMA 시스템에서 여러 사용자가 동시에 같은 주파수 대역을 사용할 때, 각 사용자가 고유한 직교 코드를 사용해 데이터를 인코딩하고, 이를 통해 여러 사용자가 신호 간섭 없이 데이터를 전송할 수 있다. == 특징 == '''직교성:''' * 왈시 코...) 태그: 시각 편집
  • 2024년 10월 24일 (목) 07:01무선 링크 (역사 | 편집) ‎[1,830 바이트]파네라 (토론 | 기여) (새 문서: '''Wireless Link''' '''무선 링크'''는 물리적인 케이블 없이 무선 신호로 두 장치 간에 데이터를 주고받는 연결을 말한다. 사용되는 기술에 따라 다양한 거리에서 데이터 전송이 가능하다. 일반적으로 "'''무선 프로토콜'''"이라고도 불린다. == 종류 == 대표적인 무선 링크의 유형은 다음과 같다: * '''Wi-Fi''': 주로 로컬 네트워크(LAN)에서 무선으로 인터넷에 연결할 때 사용...) 태그: 시각 편집
  • 2024년 10월 24일 (목) 06:48무선 호스트 (역사 | 편집) ‎[320 바이트]파네라 (토론 | 기여) (새 문서: '''Wireless Host''' 무선 호스트는 아래와 같은 장치가 될 수 있다. * 랩탑 * 스마트폰 * IoT 디바이스 * 데스트톱 * 서버 * 스테이션 '''무선 호스트라고 항상 이동 가능한 모바일 장비를 의미하는 것은 아니다.''') 태그: 시각 편집
  • 2024년 10월 23일 (수) 00:44애저 IoT 엣지 (역사 | 편집) ‎[3,450 바이트]파네라 (토론 | 기여) (새 문서: Azure IoT Edge는 Microsoft Azure에서 제공하는 서비스로, 사용자가 인공지능(AI), 분석, 맞춤형 로직 등의 클라우드 작업을 IoT 장치에 직접 배포할 수 있도록 해준다. 이 접근 방식은 데이터 소스에 가까운 곳에서 데이터 처리와 의사 결정을 수행할 수 있는 엣지 컴퓨팅을 가능하게 하여 응답성을 향상시키고 대역폭 사용을 줄인다. == 주요 기능 == # '''로컬 데이터 처리''':...) 태그: 시각 편집
  • 2024년 10월 21일 (월) 09:59리프트 곡선 (역사 | 편집) ‎[6,405 바이트]핵톤 (토론 | 기여) (새 문서: '''Lift Curve''' '''리프트 곡선'''(한국어로 '''향상 곡선'''으로도 불린다)은 '''이진 분류''' 문제에서 모델의 성능을 평가하는 도구로, ]'''모델이 랜덤 추측에 비해 얼마나 더 나은 결과를 내는지'''를 시각적으로 보여준다. 특히 '''불균형 데이터셋'''에서 모델이 얼마나 잘 예측하는지 측정하는 데 유용하다. 파일:리프트 곡선 예시.png == 그래프 구성 == * '''Lift''':...) 태그: 시각 편집
  • 2024년 10월 21일 (월) 04:03ROC 곡선 (역사 | 편집) ‎[8,533 바이트]핵톤 (토론 | 기여) (새 문서: '''Receiver Operating Characteristic; Receiver Operating Characteristic Curve''' ROC 곡선은 분류 모델의 성능을 평가하는데 사용되는 도구로, 주로 이진 분류 문제에서 모델이 얼마나 잘 분류하는지 시각적으로 보여준다. ROC 곡선은 다양한 임계값에서 모델의 '''민감도(양성 탐지율)''''''거짓 양성 비율''' 간의 관계를 나타낸다. == ROC 곡선의 구성 요...) 태그: 시각 편집
  • 2024년 10월 21일 (월) 03:19민감도 (역사 | 편집) ‎[2,176 바이트]핵톤 (토론 | 기여) (새 문서: '''Sensitivity''' 데이터 과학에서 '''민감도'''는 주로 분류 모델의 성능을 평가할 때 사용되는 지표 중 하나로, '''참 양성 비율(True Positive Rate, TPR)'''을 나타낸다. 즉, 실제로 양성(Positive)인 데이터를 모델이 얼마나 잘 찾아내는지를 의미한다. == 공식 == Sensitivity = True Positive[TP] / (True Positive[TP] + False Positive[FP]) == 활용 == 이 지표는 특히 '''의료 분야'''와 같이 양성 사례...) 태그: 시각 편집
  • 2024년 10월 21일 (월) 00:11안드로이드 API 레벨 (역사 | 편집) ‎[4,522 바이트]웹개발자 (토론 | 기여) (새 문서: '''안드로이드 API 레벨'''은 안드로이드 운영 체제의 특정 버전을 나타내는 숫자 코드이다. 각 API 레벨은 해당 버전에서 추가된 기능, 변경된 동작 및 보안 개선 사항을 포함하며, 개발자가 앱을 개발할 때 중요한 기준이 된다. 안드로이드의 API 레벨은 앱의 호환성과 기능을 결정짓는 중요한 요소로, 개발자는 특정 API 레벨에 맞춰 코드를 작성해야 한다. == API 레벨의...) 태그: 시각 편집
  • 2024년 10월 20일 (일) 06:07다중 접속 엣지 컴퓨팅 (역사 | 편집) ‎[2,411 바이트]파네라 (토론 | 기여) (새 문서: '''Multi-access Edge Computing, MEC''' 다중 접속 엣지 컴퓨팅은 다양한 네트워크를 통해 사용자와 가까운 위치에서 데이터를 처리하고 서비스를 제공하는 기술이다. 이 개념은 특히 5G 네트워크와 IoT 환경에서 중요한 역할을 한다. == 주요 특징 == '''다양한 접속 네트워크''': * MEC는 모바일 네트워크(예: 5G), Wi-Fi, 고정 네트워크 등 여러 접속 방식을 지원한다. '''로컬 데이...) 태그: 시각 편집
  • 2024년 10월 20일 (일) 06:02MEC (역사 | 편집) ‎[682 바이트]파네라 (토론 | 기여) (새 문서: MEC는 IT 업계에서 두가지 의미로 사용된다. * '''모바일 엣지 컴퓨팅(Mobile Edge Computing)''': 5G의 등장과 함께 먼저 나온 개념으로, 초저지연 초고대역폭이지만 가동 범위가 짧은 5G의 특수성을 보완하기 위해 나온 개념이다. * '''다중 접속 엣지 컴퓨팅(Multi-access Edge Computing)''': 요즘은 이 개념이 더 많이 사용된다. Mobile은...) 태그: 시각 편집
(최신 | 오래됨) ( | ) (20 | 50 | 100 | 250 | 500) 보기